
Firebird® is a registered trademark of the Firebird Foundation Inc.

© 2008 IBPhoenix

USER MANUAL

dbFileI

© 2008 IBPhoenix

Table of Contents
Part I Introducing dbFile 1

... 21 General Usage Notes

... 32 Date/Time Data

... 53 Further Information

Part II The SQL Statement 5

... 71 Field Mapping

... 92 Blob Inputs

... 113 Filler Fields for Exports

Part III Using a Control File 13

... 161 Import Examples

... 182 Export Example

... 193 The STARTDATA Directive

... 194 Reserved Words

... 195 More Useful Options

Part IV Using the Command Line 22

Part V List of Options and Switches 25

Index 31

Introducing dbFile 1

© 2008 IBPhoenix

1 Introducing dbFile

dbFile is a cross-platform command-line tool for importing and
exporting data between Firebird databases and a range of external
data file formats. The supported formats are

· delimited data-sensitive

· fixed position data-sensitive

· fixed format text (fixed field position and record size text)

Firebird Versions Supported

dbFile supports all the mainstream, official releases of Firebird distributed directly from the download
sections at the Firebird Project main website or the IBPhoenix 'Main Downloads' section. Support for
versions built and distributed from other sources cannot be guaranteed. IBPhoenix would be
interested to hear of widely-available third-party distributions that exhibit problems with dbFile. It
would also be helpful to hear of any problems you encounter when testing this utility with Alpha or
Beta versions of forthcoming Firebird releases.

Platforms

Versions are available for Linux, MacOSX and Windows. For other platforms IBPhoenix can build
dbFile to order—please inquire.

dbFile is designed to be installed easily and to be run, directly or indirectly, from a command shell.
Currently, no graphical user interface version is available. On Linux and MacOSX it can be scripted
as a bash script or cron job; on Windows it can be executed in a .bat file or with other scripting tools
that can execute shell commands. This documentation assumes the user is familiar with the platform
tools and does not attempt to provide instructions for their usage.

Installation

dbFile is distributed as a stand-alone, compiled binary program, without source code. Installation is
simply a matter of copying the executable program to your chosen directory and running it from
there. An executable installer is available for Windows.

dbFile Licensing

dbFile is proprietary software. While you are running the free trial version, you will see a reminder
message each time you call the program:

You are most welcome to test it and, if you decide to add it to your toolbox, we expect you to
purchase the licensed version. If you decide not to use it, you should remove it from your system.

dbFile2

© 2008 IBPhoenix

1.1 General Usage Notes

Case Sensitivity

Keywords and switches can be either upper or lower case on any platform.

Pay attention to any string arguments that are data, such as file paths and user names, and
conform to platform rules regarding case-sensitivity. Firebird passwords are always

case-sensitive. On most POSIX platforms, system user names and file specifications are
unconditionally case-sensitive.

Delimiter Usage

An escape sequence for non-printable characters, such as \t for the tab character that Excel uses as
its default field delimiter, is valid and will make the directive easier to read.

If you have free choice about which character to use, the vertical bar, a.k.a. "pipe", | is usually good,
since it rarely occurs in user text. It will have to be avoided if text fields are likely to contain the
unescaped pipe character. For example, if an incoming data field contains an SQL string expression,
the SQL string concatenator, double-pipe || will cause havoc.

Quoted String Fields

If your delimited input data strings have the potential to include literal characters that have syntactic
significance in the shell or SQL: environments, such as commas or semi-colons, it is strongly
recommended that you quote the strings and include the options quote=<required quote symbol>
directive to describe the string-quoting convention to dbFile.

· Excel-format files employ the double-quoting convention on text fields

· For output, strings use the quote option according to requirements. If the excel option is
specified, it is recommended to specify the double-quoting

Working Modes

On POSIX, most instructions can be entered into a single line from the command shell , which can
be quick and simple or complex enough to need a bash script for it. On Windows, an extremely
simple import could be achieved from the command line with only a data file but, in general, the
command shell in Windows is too weak to make this mode a practicable option.

For complex commands or to store an import or export process that you'll want to use again, dbFile
provides an easier and more powerful way to control the operation: use of a control file to
package the options and the SQL for the import or export .

Character Sets

The dbFile utility application does not provide any special client-side support for the international
character set (INTL) features of Firebird, beyond provision of the option charset= syntax for setting
the client character set in a control file, along with its command-line switch alternative, -t. Both must
take as argument the identifier of a valid character set that is known to the database. It will be your
responsibility to ensure that external and database table data are compatible for any transliteration
that must occur.

· for imports, dbFile has no way to determine whether text data it is reading from an input

22

13

5

Introducing dbFile 3

© 2008 IBPhoenix

file is well-formed, before passing it across the Firebird client interface for transliteration
to the character set defined for the target column

· for exports, the text written will be the same bytes that are stored in the database column
unless the byte-by-byte composition of the stored data is modified during retrieval, e.g.,
by casting

1.2 Date/Time Data

If an import field is to be received as a date or date/time the default format depends on
whether you are using the "international" or "U.S." build of dbFile.

· For the international versions, the default format is dd/mm/yyyy

· For the U.S. versions, the default format is mm/dd/yyyy

The same formats apply for exports, according to whether the build is international or U.S.

NOTE :: Imported date fields will also be treated as default format if the separator character is a
hyphen instead of a forward slash, viz., dd-mm-yyyy for international, mm-dd-yyyy for U.S.

builds.

Non-Default Date Formats

To correctly interpret or output date or date/time strings other than the default, you can include an
attribute dateform=N, where N is a number specifying another supported format.

Global Specification of Date Format

Using options dateform=N in a control file, or using instead the command-line switch -f N, causes
all imported date data to be interpreted or all exported date literals to be written according to the
date format corresponding to N. If you specify the date format at this level, it is your responsibility to
ensure that all of the date fields in incoming data are presented consistently in the format anticipated
by N.

If an options dateform=N directive is present in the control file, any usage of the switch -f N
in the command-line call will be ignored.

Field-level Specification of Date Format

If your input or output record specification includes fields of more than one literal format then the
dateform=N attribute should NOT be specified globally. The attribute should be supplied in the SQL
statement, embedded in curly braces after the SQL identifier of the column it is to qualify, for
example, {dateform=N}. (It might be one of a comma-separated list of attribute qualifiers for the
field.)

For more details about embedded attributes, refer to the topic dbFile Embedded Field Descriptors
in the chapter entitled The SQL Statement.

Date/Time Formats Supported

N Template Other Information

5

dbFile4

© 2008 IBPhoenix

11 yyyy/mm/dd 10-character ISO date format

12 mm/dd/yyyy 10-character U.S. standard date format (default in U.
S. builds)

13 yyyy/mm/dd hh:mm:ss 19-character date/time, 24-hour clock

14 mm/dd/yyyy hh:mm:ss 19-character date/time, 24-hour clock

15 dd/MMM/yyyy 11 character date where mmm is an English alpha
month abbreviation [JAN/FEB/MAR/APR/MAY/JUN/
JUL/AUG/SEP/OCT/NOV/DEC]

16 dd/mm/yyyy 10-character international date format (default in
international builds)

17 dd/mm/yyyy hh:mm:ss 19-character international date format, 24-hour
clock

In all the above formats, output will have slash separators unless forced to be hyphens (see below
)

The remaining templates are external formats that can be applied only to fields in fixed-length
records

19 yyyymmdd.hhmmss double timestamp form

20 yyyymmdd 32-bit integer date form

21 yyyyddd 32-bit integer Julian date form¾ddd is day in year

22 yyyymmddhhmmss 64-bit integer form

Forcing Hyphen Separators in Output

By default, all exported date and date/time data that use month and day separators will use slashes.
You can force hyphens to be used in place of slashes, as follows:

· in a control file, include the options hyphenateDate directive

· in a single command-line where the operation is not invoking a control file, use the -h
switch

NOTE :: It is not possible to generate a record format that has some date formats using slashes
and others using hyphens.

4

Introducing dbFile 5

© 2008 IBPhoenix

1.3 Further Information

Known Issues

There are no known issues at this time.

An updated FAQ page will be posted regularly on the IBPhoenix web site.

Reporting Bugs and Requesting New Features

Please report problems, bugs or issues to the dbFile support list hosted on www.ibphoenix.com.

To subscribe to the list, go to the lists page at the IBPhoenix website and look for dbFile.

2 The SQL Statement

For exports, an SQL SELECTstatement specifies the data you want to extract from the
database and pass to the file. For imports, you can use an INSERT, UPDATE, UPDATE OR
INSERT statement to specify the write to the database, or you can call a parameterised
executable procedure with EXECUTE PROCEDURE in order to perform the desired DML
completely at the server side.

For an export, your SELECT can be a call to a selectable procedure that returns the desired data
to dbFile. It must be a stored procedure that has been written with a SUSPEND command

designed to return one set, being the set that is specified for the output file.

Do not try to call an executable procedure using SELECT.

Statements for Input

For input statements, the standard SQL syntax for specifying unnamed replaceable parameters with a
comma-separated list of questionmarks is used. The dbFile parser treats the set of parameters as a
group of variables that, by default, are in the same order in the input file. For example, the following
statement might be used to load data from a three-field input record in a delimited file into a table
called STATES with columns COUNTRY_CD, STATE_CD and STATE_NAME:

insert into states (
 country_cd,
 state_cd,
 state_name
)
values (?,?,?)

NOTE that statement terminators¾such as ISQL's default semicolon¾and the ISQL SET TERM
statement are not valid in the dbFile environment.

dbFile Embedded Field Descriptors

dbFile implements some additional syntactic elements that are enclosed in curly braces and
embedded into the SQL statement, following the identifier of the column to which the descriptor
applies. Multiple attributes for a field are comma-separated. The following example is an element
describing some attributes of one incoming field:

http://www.ibphoenix.com
http://www.ibphoenix.com/main.nfs?a=ibphoenix&page=ibp_groups

dbFile6

© 2008 IBPhoenix

{position=10, size=2}

Such elements, which are required for processing fixed format record input and optional for delimited
record input, are stripped out before the DSQL request is submitted to the Firebird engine. The
following simple example illustrates the usage of a qualifier element for the same import specified by
the previous example:

insert into states (
 country_cd {position=10, size=2},
 state_cd {position=8, size=2},
 state_name {position=71, size=35}
)
values (?,?,?)

NOTE
Semantics of the attribute qualifiers may vary according to the type of input record. The

position attribute, for example, refers to the position of the field within the record for delimited
records while, for fixed-length records, it refers to starting position of the field relative to the

beginning of the record.

Supported Qualifiers

The following table lists the qualifiers that are available when constructing embedded field
descriptors in your SQL statements.

Qualifier
Keyword

Argument Description Input/Output

external=XXX

(in association
with size
attribute)

XXX may be INT or
FLOAT

For INT, size must be
1, 2, 4, or 8 for tiny,
short, int or long
integers

For FLOAT, size must
be 4 or 8 for short
float or long float
respectively

Use when the data item is (or is to be
delivered) in an external numeric
format. It is valid only for numeric
data.

External formats may not be
portable across all platforms.

Both, but only for
fixed-length
record formats

dateform=N

(may be
associated
with external
and/or size
attributes: if
so, N must be
consistent
with both)

N is the number
constant to which the
dateform is mapped.

The number
constants and the
applicable dateforms
are described in the
topic Date/Time Data

The format of the input date or
date/time, for parsing purposes; or the
literal form in which the output date or
date/time is to be written.

Fields that are to be read from or
written to an external (binary) date/time
format are applicable only to
fixed-length records.

Both

size=N N is an integer Size of the field, in bytes Both, but not valid
for delimited data

3

The SQL Statement 7

© 2008 IBPhoenix

position=N N is a number 1-base starting position applicable to
the field in the input or output record:

· for fixed-length records, it is the
offset of the start of the field from the
beginning of the record

· for delimited records, it is number of
the field in the field order

Both

Generated Fields

enum No argument Generates a value of smallint, integer or
BigInt type that is a row count.

For input it must be the only attribute in
the embedded element, i.e. {ENUM}.

Both

sysdate No argument Generates a value that reads the system
date and time.

· For output it is a literal string whose
format determined by an
accompanying dateform specification.

· For input it is a TIMESTAMP and it
must be the only attribute in the
embedded element, i.e. {SYSDATE}. It
must be mapped to an SQL column of
the appropriate date/time type. It
can be cast if necessary.

Both

BLOB-related
Attributes

Three attributes¾ascii_blob, blob_size amd blob_stream¾apply only to input that
is destined for writing to BLOB columns. For details, refer to the topic BLOB Inputs

.

2.1 Field Mapping

Position and Size of Fields

If the data is fixed position or delimited without using data delimiters, then specifications must be
provided to describe where the field is in the record, its size and, in some cases, its format.

9

dbFile8

© 2008 IBPhoenix

The position attribute allows fields in delimited files to be out of order with respect to the input or
output statement.

· For input, it also facilitates field skipping and re-use of a single input field to fill more than
one database column.

· For output, all field positions must be specified exactly one time. If you need to pass the
same data to more than one output field then use aliased columns in your SELECT
statement to include them in the output set.

For Input Records

For an import, the position attribute may be omitted for all fields if the input record format is
delimited using a separator AND the mapping order of the input fields to the database columns is
identical.

If a generated field {ENUM} or {SYSDATE} is included, it does not necessarily break implicit
ordering.

Otherwise, position is required in all cases.

Note that you must not have a mix where some fields have a position and some do not. It must
be all or nothing.

The attribute specifications are interpolated after each column identifier in the DML statement. For
example:

UPDATE OR INSERT INTO COUNTRY (COUNTRY {position=1 size=15},
 CURRENCY {position=16 size=10}) VALUES (?,?)

EXECUTE PROCEDURE ADD_EMP_PROJ (?{position=1 size=2}, ?{position=2 size=5})

The position attribute has different semantics according to whether the input record format is
delimited or fixed:

· in a delimited record format, position matches field position from left to right, so
{position=1} maps the first field, {position=2} the second field, and so on.

· in a fixed record format, position matches the position in the record where the field starts,
so position 1 is the first byte of the first field (or, in this case, the first variable). In this
example, the size of the first variable is 2 bytes, so the second field is at position 3. The
{size=} attribute is not used in fixed format descriptors.

In the EXECUTE PROCEDURE example above, the input fields would overlap if the input records
were fixed format. Overlapping of imported fields is not disallowed so, if you have a good

reason to do it, you can.

For Output Records

On exported records, all fields, including filler fields, must be specified on output exactly once. No
overlapping is allowed between either SQL output fields or filler fields. For output fields retrieved
from the SQL query, an example for output to a fixed-length record might be expressed as follows:

options dateform=17 hyphenateDate # dd-mm-yy hh:mm:ss
SELECT
 EMP_NO {position=1 size=2},
 FIRST_NAME {position=3 size=15},

The SQL Statement 9

© 2008 IBPhoenix

 LAST_NAME {position=18 size=20},
 PHONE_EXT {position=38 size=4},
 HIRE_DATE {position=38 size=19}
FROM EMPLOYEE

Text Columns

For CHAR or VARCHAR columns going to fixed output, right-padding with spaces will be performed
without the need to describe the attributes of the fields.

Re-mapping Field Position

The default position for delimited data into or out of SQL with no special field positions is the order of
their occurrence in the SQL statement. For delimited records, if the field order of the input or output
record is different to the SQL statement order, the {position=} element can optionally be used to
re-map the order in which the fields are read from or written to the file.

Multiple Usage of Input Fields

For reading input from a delimited record, the {position=N} phrase can be used more than once
where you want to write the same input field to multiple columns in the destination table.

Alignment Issues

dbFile does not use the input file alignment as all fields use an intermediate area which is aligned for
the worst case. However, given that it is in the order of things for numbers of all types to require
alignment, potential exists for it to be a problem for the program processing an exported file.

Bad Descriptors

If you provide field descriptors that do not fit (wrong size or wrongly qualified for type) for either
input or output, a parser error will occur and the run will be aborted. For filler fields there is
some margin for error, provided the specifications allow for a size that is large enough.

2.2 Blob Inputs

Since the size of data in BLOBs is, by design, unspecified, it is practicable only to
support them in imports. The input file is expected to include a field corresponding to
the BLOB column in the DSQL statement, containing either the data that is to be written
or an absolute or relative path to a file containing the data for that record.

The attributes for the field are listed in a curly-bracketed embedded descriptor , along with any
other attributes that are valid. For example:

INSERT INTO ATABLE (
 ...,
 MY_BLOB_COLUMN {position=4, ascii_blob},
 ...
)
values (..., ?, ...)

You may specify only one set of attributes for the BLOB input, so never try to load two or more
BLOBs of different types for the same column.

11

5

dbFile10

© 2008 IBPhoenix

Blob-related Attributes

Qualifier
Keyword

Argument

Equiv.

Switc
h

Description
Input/Out

put

ascii_blob %S No
argument

%S is not a
structural
element in
the
syntax. It
represents
the data
that is in
the input
field at the
given
position.

The parser will try to use %S as the absolute or
relative path to a file and, if it finds the file, reads
its data into the variable it has assigned for the
BLOB column. If it fails to find the file, it uses the
bytes of %S as the data for the BLOB.

Don't be alarmed by use of the "ascii"
moniker in this qualifier. It was used by the

original author of the software as a
synonym for "text". You should ensure that
your text file or inline data uses a character

set that is compatible with that of the
destination text BLOB.

Input

blob_size=N N is the
segment
size

-b N Unless instructed otherwise, dbFile takes
segmented binary as the default BLOB style and
reads in the data as binary segments of N bytes.
The default segment size is 80 bytes.

Don't worry if the segment size set here is
not the same as that of the target column.
Even though dbFile may attempt to slice up
the text into N-sized segments, the size of

BLOB segments arriving at the Firebird
server is irrelevant to how data is

segmented for storage: Firebird always
uses its own algorithms.

Input

NB :: associated
command line

switch that has no
equivalent options

attribute

-a Include this switch in the command line to instruct
dbFile to read line-break characters as segment
boundaries, according to the argument set by the
global option lineend=C or switch -l C (where C
is one of M, P or U for the platform-specific
line-break convention used on traditional
Macintosh, Windows or POSIX, respectively).

Input

blob_stream No
argument

-r Use blob streaming and ignore segments. The
blob_size and blob_stream attributes are
incompatible. However, if you accidentally supply
both then dbFile will work with the directive it
encounters last.

Input

The SQL Statement 11

© 2008 IBPhoenix

2.3 Filler Fields for Exports

For specifying output records ONLY, the directive options
filler={list_of_attributes} can used as often as needed to describe an extra "filler"
field, i.e. one not derived from the SELECT query, in the layout of the record. The rules
work differently according to whether you are specifying the output as fixed length or
delimited records.

There is no way to pass these descriptors from the command line: they must be on an options
line in a control file.

Specifying Filler Fields

Each filler entry describes one field. The list_of_attributes consists of four arguments in a
pre-defined order and separated by semi-colons. The arguments are not case-sensitive. The format
is:

options filler=s;e;t;f

The variables=N option is required if one or more filler entries are present.

Filler Attribute List Arguments

Argument Position Usage

s First s is a number specifying the starting position

· for fixed-length records, s is 1 for the first character of the first field.

· for delimited records, s is 1 for the first field

e Second e is a number:

· for fixed-length records, e specifies the ending position for the field in
the record. The size of the fixed-length field is thus (e - s + 1).

· for delimited records, an e value is used only if the t argument is used,
in which case it expresses the size of the value specified by the t
argument

SIZE MATTERS!
When interpolating non-database fields into output records,

overlaps will cause the process to stop and complain. Take care
that you allow enough space to accommodate the maximum

possible size of the generated data.

t Third t can be one of three things:

a) a single character specifying the fill character to be used to fill the
field. Suggested characters are blank, zero, or dash. (For blanks,

dbFile12

© 2008 IBPhoenix

leaving the argument empty is equivalent to typing in a space
character.)

b) the keyword SYSDATE to output the host server date or date/time,
supported by a valid date format attribute specified as the f argument

c) the keyword ENUM to output the value as a record counter (generated
as (record count + startcount)) specified by a valid number format
attribute as the f argument

f Last f is a number or string constant for the external format of the field where
a keyword was specified for the t argument. It is ignored if the t
argument was used to specify a filler character.

 If t=SYSDATE, the number constants and templates for the range of date
formats are explained in the section Date/Time Data .

If t=ENUM, the following string constants are valid:

· FmtInt16 (binary, size 2 - if less than 32,768 records will be selected)

· FmtInt32 (binary, size 4)

· FmtInt64 (binary, size 8)

· FmtCstring (for delimited file)

· FmtFixString (for fixed file - size must be large enough for the number
of digits expected)

Overlapping Fields

Use this option as many times as you have extra fields to include but take care that your
specifications do not cause fields to overlap one another.

· If you actually intend for input fields to overlap, dbFile allows it

· If you try to overlap output fields, the process will be aborted

Representing Null Arguments

All four arguments are required in the list_of_attributes. Where an argument is null, omit the value
but include the separator. For example, the following directive will work fine to put :

options filler=4;;sysdate;18

3

Using a Control File 13

© 2008 IBPhoenix

3 Using a Control File

Kicking off a file import or export with dbFile involves passing a number of switches and
arguments to the executable program. For simple, one-off operations, that can be quick
and handy. Even so, even the most minimal command line will include specifications for
direction (import or export), the database path, the file specification for the import or
export file and Firebird authentication credentials.

For anything you might want to repeat, or for an operation with a lot more than the minimum
options, you can prepare a control file in your favourite text editor. Supposing you had created a
properly constructed control file named mydef.def, specifying the options for exporting data from a
Firebird database, the following command is all that is required:

dbFile -x mydef.def

The -x switch, while available on POSIX platforms, is optional there. If it is omitted, the file is
read via the stdin stream.

Writing a Control File

A control file comprises a set of options and an SQL INSERT statement. Options are specified in the
control file using the marker keyword options with a range of keywords that equate to the
corresponding command-line switches. You can mix options in the control file and the command line
if you wish. Options specified in the control file overrule any switches passed in the command line.

The control file may be any number of lines. Options lines come first: each line can be up to 4096
characters long. One and only one DSQL statement follows, consisting of any number of lines, with a
maximum size of 4088 characters, including white space, embedded data qualifying attributes and
commented sections.

For an import, the control file may be written so as to embed the data for input. by including in a
section after the SQL statement, headed up by a STARTDATA directive .

The options Keyword

The syntax for expressing an option is:

options <keyword>[=<argument>]

where <keyword> is one of a set of available keywords and <argument> is a valid argument for the
specific keyword. The <, > and square brace symbols used here are not part of the syntax.

Arguments are not quoted, even if they are strings. Space characters should not be inserted on either
side of the "=" sign.

Some options do not require an argument. For example, in options excel, the keyword excel
stands alone to instruct the parser to conform to certain specific rules that apply to reading and
writing .csv files generated by or for Microsoft Excel. In general, for options that do take arguments,
the argument is required.

Multiple options in a control file can be continuously "run-on" with no line breaks or can be broken
up into separate lines to simplify editing. However, take note of some special rules that apply to
option lines:

19

dbFile14

© 2008 IBPhoenix

· If you use line breaks between options, each option line must begin with the option
keyword.

· If line breaks are not used, use the option keyword just once, at the beginning of the line,
and separate each option from the next by one space character.

· You can mix multi-option and single-option lines in your control file.

Minimum Options

The minimum options are:

Keyword Purpose

charset= Sets the client character set. Its argument is the identifier or alias of a character set
known to the database

direction= Indicates whether the task is an import (i) or an export (o)

db= An unquoted string that is the full connection string (server and file path or alias) to
the Firebird database

file= An unquoted string that is the filesystem path to the input or output file that is to be
read from or written to

user= Firebird login user name. Can be omitted if the ISC_USER and ISC_PASSWORD
environment variables are set

passwd= Firebird login password. Can be omitted if the ISC_USER and ISC_PASSWORD
environment variables are set

delimiter= Required for delimited text input or output, this option takes as its argument the
character that is used as the field delimiter. Refer to the notes in the introduction
regarding delimiter usage .

variables= An integer indicating the number of parameters in your INSERT statement

Login Credentials

Both the user name and password must be supplied. If the ISC_USER and ISC_PASSWORD environment
variables are available, the user name and password can be omitted.

NOTE :: Mixing will NOT work. That is to say, if you supply just one of user name or password,
and rely on an environment variable to complete the credentials, you'll get an authentication

error.

The SQL Statement

The SQL statement follows all of the options lines.

· For imports, dbFile works with parameterised DSQL statements UPDATE, INSERT, UPDATE

1

Using a Control File 15

© 2008 IBPhoenix

OR INSERT and with calls to executable stored procedures.

· For exports, dbfile retrieves data with a SELECT statement which may be parameterised. It
can be any valid SELECT statement, including joins, subqueries, views or SELECTs on
selectable stored procedures.

The statement can occupy any number of lines in the control file. No special continuation characters
are needed to continue a statement but words may not be split between lines as a space will always
be added in between multiple lines of SQL.

Embedded Comments

The "pound" (#) sign may be used on any option or SQL line to indicate that all characters to its right
are to be ignored. Parsing will recommence at the start of the next line.

CAUTION
Specifying the pound sign as a field delimiter, viz., option delimiter=# is not recommended,
since the parser will interpret the # marker of your comment as a delimiter character and the

rest of the line will continue to be parsed until the next # character.

Parameters and Position

Firebird parameter placeholders are positional, each represented by a questionmark (?), for example:

UPDATE OR INSERT INTO COUNTRY (COUNTRY,CURRENCY) VALUES (?,?)

For cases where the field order in the input file is different to that in the DSQL statement, an optional,
1-based position argument can be included in the statement to map the field position of each field of
the file record to the field position in the statement's input list.

The following example (normally unnecessary) expresses exact mapping for the statement above,
where the input records have fields in the same order as the input list of the DSQL statement:

UPDATE OR INSERT INTO COUNTRY (
 COUNTRY {position=1},
 CURRENCY {position=2})
 VALUES (?,?)

The following syntax enforces the mapping of the second field of the input record to the first
parameter of the INSERT statement:

UPDATE OR INSERT INTO COUNTRY (
 CURRENCY {position=2},COUNTRY {position=1})
 VALUES (?,?)

NOTE :: This specific usage of the {position} specifier is for delimited record types. Fixed
format records use it differently, as explained below under Fixed Position Text Records.

Processing the Control File

Processing the control file is no more than invoking the dbFile executable with the switch -x
<path_to_control_file>

For an example with simplified syntax, to execute a file named mydef.def in which you have set your
options, call

dbFile16

© 2008 IBPhoenix

dbfile -x mydef.def

In practice, of course you must abide by platform and shell rules for invoking executables from the
command line and filesystem rules for accessing and expressing the path to the control file.

3.1 Import Examples

The following examples illustrate importing data from a variety of formats into the
Country table in the sample Employee database (located in $firebird/firebird/examples/
empbuild/employee.fdb in a typical Firebird installation).

Delimited Text

In a delimited text file, data records are separated by line breaks, while fields within each record are
separated consistently with a single 7-byte character, such as a TAB character or a rarely-used
printable character, such as the "pipe" symbol (|, ASCII 124/x07C).

Your delimited text data file might contain data like this:

USA|Dollar
England|Pound
Canada|CdnDlr
Switzerland|SFranc
Japan|Yen
Italy|Euro
France|Euro
Germany|Euro
Australia|ADollar
Hong Kong|HKDollar
Netherlands|Euro
Belgium|Euro
Austria|Euro
Fiji|FDollar

A control file for the import could be:

options db=127.0.0.1:/opt/firebird/examples/empbuild/employee.fdb
options file=countries.txt
options direction=i
options passwd=masterkey
options user=SYSDBA
options variables=2
options delimiter=|
UPDATE OR INSERT INTO COUNTRY (COUNTRY,CURRENCY) VALUES (?,?)

.CSV Format

OpenOffice, Microsoft Excel and many other data storage applications can export data as plain text in
comma-separated values ("CSV") format. The characteristics of CSV include double-quoting on string
values and fields separated by commas or some other configurable separator character.

For example, an input file for our COUNTRY table, using a semicolon as the field separator, might
look like this:

"COUNTRY";"CURRENCY"
"USA";"Dollar"
"England";"Pound"
"Canada";"CdnDlr"
"Switzerland";"SFranc"
"Japan";"Yen"

Using a Control File 17

© 2008 IBPhoenix

"Italy";"Euro"
"France";"Euro"
"Germany";"Euro"
"Australia";"ADollar"
"Hong Kong";"HKDollar"
"Netherlands";"Euro"
"Belgium";"Euro"
"Austria";"Euro"
"Fiji";"FDollar"

The control file could be :

options excel quote=" delimiter=; direction=i file=countries.txt
options variables=2 user=SYSDBA passwd=masterkey
options db=127.0.0.1:employee
UPDATE OR INSERT INTO COUNTRY (COUNTRY,CURRENCY) VALUES (?,?)

Fixed Position Text Records

In a fixed-length format, there are no fields of variable length and no delimiters. Interpretation of
this input data as fields and records depends on two attributes:

1.The starting position of each field

2.The size of each field (number of characters)

Position and Size Arguments

A specialised usage of the embedded directive descriptors specifies these two required attributes
to dbFile for each field in the fixed position text record. The interpolated clause (one for each input
field) has the form

{position=p size=s}

where p is the 1-based start position in the record and s is the maximum number of characters in the
field. For example, a record with the form

Switzerland SFranc

has two fields, the first defined by {position=1 size=15}, the second by {position=16 size=10}
.

Suppose your fixed position countries.txt file has fixed position data such as the following:

USA Dollar
England Pound
Canada CdnDlr
Switzerland SFranc
Japan Yen
Italy Euro
France Euro
Germany Euro
Australia ADollar
Hong Kong HKDollar
Netherlands Euro
Belgium Euro
Austria Euro
Fiji FDollar

A control file for this import could be:

options direction=i file=countries.txt variables=2

5

dbFile18

© 2008 IBPhoenix

options user=SYSDBA passwd=masterkey db=127.0.0.1:employee
UPDATE OR INSERT INTO COUNTRY (COUNTRY {position=1 size=15},
 CURRENCY {position=16 size=10}) VALUES (?,?)

The variables= option specified here indicates that the DSQL statement has two parameters.

Fixed Position Data without Line Breaks

Certain fixed position data formats do not separate records by line breaks: data just runs in a
continuous string. An additional option keyword is available for specifying the record length for such
formats:

lrecl=nn

where nn is length of one record.

For fixed position input in certain character sets and/or file formats, nn could be the byte
count, rather than the character count. If you have non-ANSI character sets or platform-
specific file formats in the picture, experimentation in a test environment is strongly
recommended, to establish the specifics of the case.

3.2 Export Example

With dbfile you can export data into a delimited or fixed size file.

The syntax is very similar to that for importing. The direction option changes to
direction=o and the SQL statement becomes a SELECT query over one or more tables or
views or a selectable stored procedure that returns rows.

A control file consisting of the following:

options direction=o file=countries.txt variables=2 user=SYSDBA
 passwd=masterkey db=127.0.0.1:employee
SELECT COUNTRY {position=1 size=15},
 CURRENCY {position=16 size=10}) FROM COUNTRY

will produce the following fixed size data file:

USA Dollar
England Pound
Canada CdnDlr
Switzerland SFranc
Japan Yen
Italy Euro
France Euro
Germany Euro
Australia ADollar
Hong Kong HKDollar
Netherlands Euro
Belgium Euro
Austria Euro
Fiji FDollar

The named output file is created by dbFile. If a file of that name exists already, dbFile will
overwrite it.

Using a Control File 19

© 2008 IBPhoenix

3.3 The STARTDATA Directive

For those who want it, the data records for an import of delimited records can be
optionally embedded into the control file. The directive STARTDATA following the SQL
statement tells dbFile to read all content from the beginning of the next line to the
end-of-file marker as input.

Limitations

Although embedding the input data in the control file is supported, it is not recommended: import
files are usually outputs from other sources of data and there are strong reasons to keep data and
processing directives cleanly separated. Moreover, it restricts your control file to a one-off usage,
defeating the objective of storing a repeatable process conveniently in a file.

If you are determined to use STARTDATA, keep in mind that there are limitations to this usage:

· It is invalid for data in Excel format data since the control file itself is not compatible with
Excel

· It does not support input of fixed record format

On Windows, bear in mind that conditions exist where the operating system does not correctly
write an end-of-file marker if the last line of data is not completed with a hard "paragraph

break" (carriage return + linefeed). It is a good precaution therefore to make a point of hitting
the Enter key at the end of your block of data, before saving the file.

Usage in a Raw Command

On POSIX, it is possible to invoke dbFile and import data without using a control file. It is possible
(albeit not particularly practicable!) to append a STARTDATA block to a raw dbFile command using
regular shell syntax. For more information, see the examples in the topic Using the Command Line
Without a Control File .

3.4 Reserved Words

The words OPTIONS and STARTDATA¾whether in upper or lower case or as quoted
identifiers¾are reserved for dbFile and may not be used in the SQL statements that you
pass to the application. Ideally, if you know at design time that you need to use dbFile
to load or unload data, it is advisable to avoid creating columns that have these names.

If columns already exist that use these names, you may use ALTER TABLE statements to rename the
problem columns and add COMPUTED BY columns with the original names to duplicate the data from
the renamed ones.

NOTE :: an alternative is to retain the original columns and create the computed columns for
dbFile operations. However, for loading data, you will need to write BEFORE INSERT OR UPDATE

triggers to ensure that the "Attempted update of read-only column" exception (code
335544359, gdscode read_only_field) is caught and handled by diverting the write to the real

column.

3.5 More Useful Options

The following list includes some more options that you can use in control files to
augment and prefect your data import or export. The full list of keywords and switches

22

dbFile20

© 2008 IBPhoenix

 is at the end of this document.

Keyword Argument[s] Purpose

discards=NAME NAME is the relative or fully-specified
path to a file

Discards from input processing can be
sent to a file. On POSIX, the default is /
dev/null.

errors=N Stop loading after N errors Causes the import or export operation
to stop after N errors have occurred.
Default is 1 (stop on the first error).

Note also that the keyword short_ok makes a "short" input record into a
warning condition rather than throwing an error.

 excel

No arguments Informs dbFile that the file is in Excel
format. For input files dbFile will
ignore the first line. For output files, it
will generate column names as the first
line of the file.

 file=NAME NAME is the relative or fully-specified
path to the input or output file

The named output file is created by
dbFile. If a file of that name exists
already, dbFile will overwrite it.

fractComma

No arguments Fractional numbers use a comma as the
decimal point. The default decimal
separator is a period.

hyphenateDate No arguments Output dates will use hyphens as
separators, instead of the default
slashes.

lineend=x

x = M, P or U Indicates the line-break type (M for
Mac, P for Windows/DOS, U for Unix).
The default is the standard line-break
type applicable to the operating
system.

logfile=NAME

NAME is a relative or fully-specified
path to a file

File for logging both stdout and stderr.
On Windows, if logging is wanted, this
is the only way to get it.

lrecl=N

N is the length of a fixed-length
input record, where there are no line
breaks separating records

Used only for fixed size records only
and only those with with no line
endings (like some IBM output formats).
 There is a caveat: there can be no
short records, except the last, and
applying the wrong value to N will

25

Using a Control File 21

© 2008 IBPhoenix

create data in your database that is
wrecked beyond repair.

pad=C

C is a single character to be used as
padding

For fixed output, use the character
specified by C to fill in any parts of the
output record not described by either
SQL output or filler fields. Escaping
is valid and may be required if your pad
character is one that has semantic
significance in your command shell.

quote=X

X must be either a single or double
quote character

For use only if the delimiter option is
used. Specifies the style of quote used
for quoting strings. Strings only need
to be quoted if the delimiter character
potentially may occur in the string. If
the quote option is specified, all output
strings will be quoted ALWAYS.

Numbers do not need to be quoted and will never appear in output with
quotes.

rows=N

N is a number Stop the import or export after after N
rows have been processed. Default: no
limit on the number of rows to process.

short_ok

No arguments The default is to treat short input
records as errors and not to load them
(skip them and optionally log them).
The effect of short_ok is to specify that
short records are to be loaded, with
missing fields treated as null.

skip=N

N is a number Skips N records in the input file or the
SQL query output before commencing
the import or export process.

startcount=N N is a number Uses N as the base for generating the
filler count that is specified by defining
the filler field ENUM. The output value
is generated as (record count so far +
startcount). The default value for N is
0.

trans=N N is a number Commit the transaction after every N
rows of input. Default: 5000.

verbose No arguments Execute the process in verbose mode.
The default is to report only errors.

25

dbFile22

© 2008 IBPhoenix

See full List of Options and Switches

4 Using the Command Line

Of course, dbFile is a command-line utility: that is, it is designed to be run from a
command shell. Invoking dbFile with the -x switch pointing to a well-thought-out
control file is the most natural and sturdy way to perform your import or export. If you
are operating on a Windows platform, it is the only way to use dbFile.

But, even if your platform is not Windows, the control file approach is recommended, especially if you
plan to repeat similar operations. As explained earlier, the typing at run-time is minimal and you
have a much better chance of specifying the operation correctly and completely.

Using the Command Line Without a Control File

On POSIX platforms, including MacOSX, an import from or export to a delimited file may be done
directly from the command line, without using a control file. Those who habitually write scripts to
accomplish tasks on these platforms will find equivalents to virtually all of the descriptor options
available for control file usage. As well as each of the minimum options described for usage in
control file mode, dbFile has switches to enable you to pass the attributes applicable to delimited file
imports or exports. They are described in their entirety, along with all of the control file options, in
the next section, List of Options and Switches .

Command Format

The format for the "raw" invocation of dbFile is the same as when invoking it with a control file except
that, while there is no -x switch, there will be a number of other switches, along with their
arguments. Following the switches is a block of redirected data wrapped in a pair of alphanumeric
symbols invented by you (avoiding any symbols that are significant to the shell parser, of course!).
For example, you could use the characters 'EOF' or 'XYZ' as the marker for your block. The dots in the
following patterns are standing in for your actual content.

dbfile<<EOF
...content...
EOF

dbfile<<XYZ
...content...
XYZ

What you include in your block is up to you. In the simplest case it would be just your SQL SELECT or

25

25

Using the Command Line 23

© 2008 IBPhoenix

DML statement; but it could also include options directives (ahead of the SQL) and even a
STARTDATA block following the SQL statement. The same rules of placement that apply inside a
control file also apply inside your redirected block.

The Essential Switches

The "essential" switches are the ones that are required to specify a non-control import or export from
or to a delimited file. Each consists of an alphabetic character preceded by a hyphen, e.g. -u,
followed by a space followed (in most cases) by an argument. For example:

dbfile -u sparky -p icuryy4me

Switches can be lower or upper case on any platform; that is, a lower case letter and its ANSI upper
case equivalent are semantically identical for switches. The same may or may not be true for the
argument! Arguments are unquoted.

User Authentication Switches

Switch Argument Comments
Options
Equivalent

-u User name Valid Firebird user name. The user must be one that
has the appropriate privileges to the database tables
and/or objects that will be accessed by the DSQL
statement. Case-insensitive unless the user was created
in double-quotes AND has any characters that are not
7-bit upper-case.

USER=

-p Password Valid password for the user name. Always
case-sensitive.

PASSWORD=

If the environment variables ISC_USER and ISC_PASSWORD are available,
or you are on a POSIX server logged in as root, then these switches are
optional.

On a POSIX server where system UIDs have authentication profiles in the
Firebird security database, the system user login should be sufficient.

Data-related Switches

Switch Argument Comments
Options
Equivalent

-db A string Full qualified path or alias to the database, according to
platform, server model and whether it is local or remote.

Don't forget that, on POSIX, a local connection
cannot be made if the server is Superserver and,
on Windows, Classic 1.5.x versions cannot take a

local connection.

DB=

19

13

dbFile24

© 2008 IBPhoenix

-i or -o A file
specification
(string)

The argument is the qualified or relative path to the
input file if the switch is -i or the output file if the
switch is -o.

DIRECTION=
together with
FILE=

-c Single
character
or xNN

Character that is used as the field delimiter in the input
record or is to be used as the field delimiter in the
output record. You may use xNN hex notation for
special characters; e.g. x08 for tab

DELIMITER=

-n A whole
number

Number of variables in the input or output record. For
output it may be a '?' but it should be escaped to
ensure it is ignored by the parser.

VARIABLES=

-t A character
set identifier

Sets the client character set. NAME is the identifier or
alias of a character set known to the database

CHARSET=

More switches are described in the next section .

For delimited files, using the command line alone may be sufficient. However, note that

· unless the -c and -n switches are used for delimited file input, a control file must be used
to specify options.

· all options specified in a control file override any equivalent arguments specified in the
command line call

The SQL Statement

The SQL statement should be the first (or only) content in the redirected block. If you happen to
incorporate the actual data in your command, the STARTDATA directive must follow the SQL
statement on a line of its own.

The following illustrates a "quick and dirty" call from the command line on POSIX to load a trivial set
of data on the fly:

echo "let us try some silly load stuff"
dbFile -n 2 -i -d /tmp/mydb.fdb -c '|' <<EOF
insert into fubar (foo, bar) values (? ?)
STARTDATA
monkey|shine
blue|moon
sick|input
crazy|text
EOF
echo "we just loaded some silly data"

Special Characters

Characters such as brackets, semi-colon, colon, comma, parentheses, single or double quotes,
questionmark or the pipe symbol (vertical bar) may have to be escaped on the command line, if the
same characters are syntactic elements of the command shell interpreter.

25

25

Using the Command Line 25

© 2008 IBPhoenix

Escaping Shell-Sensitive Characters

"Escaping a character" means inserting another special character, before the shell-sensitive character
to tell the command shell interpreter to ignore its syntactic significance and treat it as a literal. The
inserted character and the character it operates on are together referred to as "an escape sequence".

SQL users may be already familiar with "escaping" literal single-quote characters by preceding them
with another single quote, a convention sometimes referred to as "doubling". The concept is similar,
but command shells do not use doubling. Instead, they use a specific character that is reserved as
the escape character.

· In most POSIX shells, including MacOSX, the escape character is the backslash (\)

· In the Windows command shell the escape character is the caret (^)

Line Break Characters

Both carriage return (CR) and newline (NL) alias linefeed (LF) are very special characters. One or the
other, or both, are used as line terminators. Which one depends on the operating environment. On
Windows, a line break consists of both CR and LF, in that order. On POSIX, including the MacOSX text
terminal, it is a NL alone. In the original Macintosh operating system it was CR alone. On a MacOSX
system, the GUI terminal might be configured to conform with the text command shell or with other
GUI applications, which still use the native Macintosh convention.

Delimited Input Files

Since string data might contain embedded line terminators of either kind, there can be problems for
output as well as for input files.Text blob files are handled correctly, but delimited input files with
embedded line breaks will cause fatal problems.

Be aware that, for delimited input files, dbFile does not have a catch-all solution for the
problem of embedded line breaks. It remains the user's responsibility to deal with any

pre-processing of the data to hide the line-breaks.

Fixed format data files are not prone to this problem since a different read method is used, that
ignores the syntactic role of CR and NL altogether.

Delimited Output Files

When outputting delimited files, dbFile substitutes all embedded NL/LF and CR characters with the
non-printable 7-bit characters x01 and x02, respectively. Such output can be passed safely in an
input file and dbFile will replace them appropriately with the NL/LF and CR characters.

5 List of Options and Switches

The following is the full list of options available, along with the corresponding
command-line switches that could be used instead, if not provided in a control file.

Keyword Argument[s] Switch
Equivalent

Purpose

dbFile26

© 2008 IBPhoenix

charset=NAME NAME is an identifier -t NAME Sets the client character set. NAME is the
identifier or alias of a character set known
to the database

dateform=N N is a number -f N N identifies the external date or date/
time format of input or output date
literals. The numbers and the
corresponding format templates are listed
in the topic Date/Time Data .

db=ARG ARG is an unquoted
string that is the fully
qualified path or alias
to the database,
according to platform,
server model and
whether it is local or
remote.

-d ARG Targets the database to which dbFile
must connect in order to write or read the
data.

Don't forget that, on POSIX, a local connection cannot be made if the
server is Superserver and, on Windows, Classic 1.5.x versions cannot take

a local connection.

delimiter=C
or
delimiter=xNN

C is an ASCII character,
which may be in hex
notation as xNN for
special characters;
e.g., x08 for TAB

-c C Required for delimited text input or
output, it takes as its argument the
character that is used as the field
delimiter. Refer to the notes in the
introduction regarding delimiter usage

.

direction=C In a control file, C is a
character which must
be either i or o

For a switch, the
argument NAME is a
string which is the
fully qualified or
relative path to the
data file

-i NAME

or

-o NAME

Specifies whether the operation is an
import or an export.

· In a control file, i specifies an import, o
an export. The input or output file is
specified in a separate options
attribute, file=NAME

· On a command-line, the -i or -o switch
takes NAME as its argument.

The direction= directive may be omitted if you use the STARTDATA
feature to embed the input data in your control file.

discards=NAME NAME is the relative or
fully-specified path to
a file

Discards from input processing can be
sent to a file. On POSIX, the default is /
dev/null.

errors=N Stop loading after N
errors

Causes the import or export operation to
stop after N errors have occurred.
Default is 1 (stop on the first error).

3

1

List of Options and Switches 27

© 2008 IBPhoenix

 excel

No arguments -e Informs dbFile that the file is in Excel
format. For input files dbFile will ignore
the first line. For output files, it will
generate column names as the first line
of the file.

 file=NAME NAME is the relative or
fully-specified path to
the input or output
file

Argument
to

the -i or -o
switch

N.B. the control file can also be the input
file - see the topic about the STARTDATA
directive .

fractComma

No arguments -m Fractional numbers use a comma as the
decimal point. The default decimal
separator is a period.

hyphenateDate No arguments -h Use hyphens instead of the default
slashes as element separators for output
dates.

lineend=C

C is a character, one of
M, P or U

-l C Indicates the line-break type (M for Mac,
P for Windows/DOS, U for Unix). The
default is the standard line-break type
applicable to the operating system.

logfile=NAME

NAME is a relative or
fully-specified file
path

-s NAME Path to the file name for logging both
stdout and stderr. On POSIX, stdout and
stderr are the default. On Windows, no
logging will be provided unless the logfile
option or -s switch is explicitly supplied.

lrecl=N

N is the length of a
fixed-length input
record, where there
are no line breaks
separating records

Used only for fixed size records only and
only those with with no line endings (like
some IBM output formats). There is a
caveat: there can be no short records,
except the last, and applying the wrong
value to N will create data in your
database that is wrecked beyond repair.

pad=C

C is a single character
to be used as padding

For fixed output, use the character
specified by C to fill in any parts of the
output record not described by either SQL
output or filler fields. Escaping is valid.

For information about escape characters,
refer to the topic Escaping Shell-sensitive
Characters .

passwd=NAME NAME is an unquoted
string. It is case-
sensitive

-p NAME Firebird login user name. Can be omitted
if the ISC_USER and ISC_PASSWORD
environment variables are set

19

25

dbFile28

© 2008 IBPhoenix

quote=X

X must be either a
single or double quote
character

NOTE :: If you
need to specify
single quotes
then only the
control file

method
supports it.

-q

Switch
takes no

argument:
only

double-
quotes are
available

Valid only if
the

-c switch is
used

For use only if the delimiter option is
used. Specifies the style of quote used
for quoting strings. Strings only need to
be quoted if the delimiter character
potentially may occur in the string. If the
quote option is specified, all output
strings will be quoted ALWAYS.

Numbers do not need to be quoted and
will never appear in output with quotes.

rows=N

N is a number Stop the import or export after after N
rows have been processed. Default: no
limit on the number of rows to process.

short_ok

No arguments -z The default is to treat short input records
as errors and not to load them (skip them
and optionally log them). The effect of
short_ok is to specify that short records
are to be loaded, with missing fields
treated as null.

skip=N

N is a number Skips N records in the input file or the
SQL query output before commencing the
import or export process.

startcount=N N is a number N Uses N as the base for generated filler
counts. As each record is processed, N is
incremented by 1. The default base N is
0.

timestamp No arguments Include time in generated date/time fields
(default is just date)

trans=N N is a number Commit the transaction after every N
rows of input. Default: 5000. The
minimum for N is 100, maximum 20000.

user=NAME NAME is a string.

If the user was
created in
double-quotes AND
has any characters that
are not 7-bit
upper-case then it
must be
double-quoted and

-u NAME Firebird login user name. Can be omitted
if the ISC_USER and ISC_PASSWORD
environment variables are set.

The user must be one that has the
appropriate privileges to the database
tables and/or objects that will be
accessed by the DSQL statement.

List of Options and Switches 29

© 2008 IBPhoenix

quote symbols may
need to be escaped.

variables=N N is a number, viz.,
the number of input or
output parameters

-n N For input this directive is required. For
output, you may omit it if there are no
filler fields. If provided, it is checked
against columns specified in the query.

For output, if you have a SELECT * query as your SQL, you may still
include a variables= descriptor. If N is unknown in these

circumstances, use an escaped questionmark (\?) for the N argument.

verbose No arguments -v Execute the process in verbose mode.
The default is to report only errors.

xtra_fields=N N is a number A count of the extra "filler" fields to be
built for output. For information about
filler fields, see the topic Filler Fields for
Exports .

year=NN NN is a number
representing the last 2
digits of a year

-y NN Treat any 2-digit year in input dates after
this number as belonging to the previous
century

11

Index 31

© 2008 IBPhoenix

Index
- # -

comment marker, 15

- . -

.CSV record format, 16

- B -

Bugs, reporting, 5

- C -

Case sensitivity, 2

Character sets, 2

Control file, not using, 22

Control file, using, 13

CSV, 16

Curly braces for descriptors, 5

- D -

Date/time data, 3

Date/time formats, 3

Date/time templates, 3

dbFile licensing, 1

dbFile usage, known issues, 5

Delimited text records, 16

Delimiter usage, 2

Delimiter usage tips, 2

Descriptors for fields, 5

- E -

Embedded field descriptors, 5

Embedding comments, 15

ENUM descriptor, 11

Escape characters, 25

Escape sequence, 25

Export example, 18

- F -

Features, requesting, 5

Field mapping, 7

Filler fields, 11

Fixed position record, 17

- G -

General usage notes, 2

Generated fields, 11

- - -

-h switch, 4

- H -

Hyphen as date separator, 4

hyphenateDate directive, 4

- I -

Import examples, 16

Installation, 1

- K -

Known issues, 5

- L -

Licence, 1

- M -

Modes, working, 2

- O -

Options, 19

options keyword, 13

Options, list of, 25

- P -

Platforms supported, 1

- R -

Reporting bugs, 5

dbFile32

© 2008 IBPhoenix

Requesting features, 5

Reserved word OPTIONS, 19

Reserved word STARTDATA, 19

- S -

SQL statement, 5

STARTDATA, 19

Switches, list of, 25

SYSDATE directive, 11

- T -

The STARTDATA directive, 19

- U -

Usage without a control file, 22

Usage, general, 2

- W -

Working modes, 2

	IBPhoenix dbFile User Manual
	Contents

	Introducing dbFile
	General Usage Notes
	Date/Time Data
	Further Information

	The SQL Statement
	Field Mapping
	Blob Inputs
	Filler Fields for Exports

	Using a Control File
	Import Examples
	Export Example
	The STARTDATA Directive
	Reserved Words
	More Useful Options

	Using the Command Line
	List of Options and Switches
	Index

