
 

TECH-TPZ303-R

Full text search in Full text search in 
Firebird without a full Firebird without a full 

text search enginetext search engine
Björn Reimer, Dirk Baumeister



 

Who we are?

Björn ReimerBjörn Reimer
● Working as DBA at 

the Friedrich-
Alexander-Universität 
Erlangen Nürnberg

● Independent software 
developer 

Dirk BaumeisterDirk Baumeister
● Working as 

Computer Scientist at 
the Language Centre 
of the Friedrich-
Alexander-Universität 
Erlangen Nürnberg

● Independent software 
developer



 

Requirements and intentions (1)
● Fast search in different smaller texts
● Consider stop words
● Multi language capable
● Access from windows applications (Delphi)

and www with Perl or PHP
● Simple client apps
● No 3-tier application = Keep It Simple



 

Requirements and intentions (2)
● Only use “standard” UDFs 

(shipped with Firebird)
● Save meta information for texts
● Not too much time consumption when inserting 

a new text
● Compromise: medium performance is enough
● Reusable in other projects



 

Interface / API
● Pure SQL with Stored Procedures
● Methods:

– add text
PROCEDURE PRC_TXT_INSERT 
("Text" VARCHAR(32000), "RefLanguage" BIGINT, 
"RefPriorText" BIGINT)
RETURNS ("RefText" BIGINT)

– find text:
PROCEDURE PRC_TXT_DOSEARCH ("Word" VARCHAR(80), 
"RefLanguage" BIGINT) 
RETURNS ("RefText" BIGINT)



 

Structure of DB



 

Tables
● TXT_KEYWORD: keywords, which are already 

indexed
● TXT_IGNORDEWORD: keywords, which never 

will be indexed
● TXT_LANGUAGE: languages
● TXT_TEXT: the text
● TXT_TEXTMETA: meta info of text
● TXT_WORD4TEXT: found keywords in texts



 

Insert text
● Insert text into table TXT_TEXT
● If set in CNF: call 

PRC_TXT_UPDATEKEYWORDS
for checking, whether known keywords are in 
the new text

● Otherwise call 
PRC_TXT_UPDATEALLKEYWORDS
after bulk import

● Never automatically add new keywords to 
TXT_KEYWORD, when inserting texts



 

Find (part 1)

Use procedure PRC_TXT_DOSEARCH
● Check, if search word is a known keyword
● If not:

– check, whether search word is in ignore word list
● If not:

– Add search word as new keyword
– Search in all texts for this word
– Save result in TXT_WORD4TEXT



 

Find (part 2)
● If search word is a known keyword

– search in TXT_WORD4TEXT 

Always: If text is returned, check, whether text is 
root text otherwise follow links back to root text 

In Client: Fetch all text information via separate 
SELECT.



 

Performance
● Good performance when inserting
● Poor performance, when searching keyword the 

first time
● Good performance, when searching keyword 

second time and so on



 

performance environment
● Environment

Firebird 2.0 RC 5 (Super Server)
Athlon 64 3800+ X2
2 GB Ram
Windows XP Pro

● Interface IBExpert with fbclient.dll on the same 
machine (executed at least twice via fetch all in 
sql window)

● about 210000 text records with always the 
same text (about 1 GB DB size)



 

performance for raw search
SELECT T."Id" FROM TXT_TEXT T 
WHERE T."Text" containing 'OKTIS';

PLAN (T NATURAL)

Prepare time = 0ms
Execute time = 34s 703ms
Avg fetch time = 0,17 ms
Current memory = 969.996
Max memory = 1.054.760
Memory buffers = 2.048
Reads from disk to cache = 53.358
Writes from cache to disk = 0
Fetches from cache = 529.432



 

performance for already 
indexed word

SELECT T."Id" FROM TXT_TEXT T JOIN TXT_WORD4TEXT WT 
ON WT."RefText" = T."Id" WHERE WT."RefKeyWord"= 28;

PLAN JOIN (WT INDEX 
(FK_TXT_WORD4TEXT_RefKeyWord), T INDEX 
(PK_TXT_TEXT))

Prepare time = 16ms
Execute time = 375ms
Avg fetch time = 0,04 ms
Current memory = 966.596
Max memory = 1.054.760
Memory buffers = 2.048
Reads from disk to cache = 0
Writes from cache to disk = 0
Fetches from cache = 70.015



 

performance for new word
SELECT "RefText" 
FROM PRC_TXT_DOSEARCH('OKTIS', 29);

Prepare time = 0ms
Execute time = 53s 750ms
Avg fetch time = 0,26 ms
Current memory = 1.180.856
Max memory = 1.344.996
Memory buffers = 2.048
Reads from disk to cache = 56.633
Writes from cache to disk = 2.491
Fetches from cache = 7.083.702



 

performance of a known word
SELECT "RefText" 
FROM PRC_TXT_DOSEARCH('OKTIS', 29);

Prepare time = 0ms
Execute time = 1s 828ms
Avg fetch time = 0,01 ms
Current memory = 1.106.748
Max memory = 1.175.184
Memory buffers = 2.048
Reads from disk to cache = 0
Writes from cache to disk = 0
Fetches from cache = 420.090



 

application range

Easily usable in existing dbs
● Search in free text
● Search in xml data
● ...



 

enhancements
● Use BLOB instead of Varchar 

(more complex in client)
● Linguistic enhancements (e. g. case)
● Parser for import

– XML
– HTML

● More intelligent search methods



 

The END
● Contact for questions and improvements:

Björn Reimer (reimer@softbaer.de)

Dirk Baumeister (baumeister@softbaer.de)


