
Bidirectional replication for InterBase and Firebird

The open source database server, Firebird1, and its commercial partner, Borland InterBase2, have long
been established as a proven and stable platform for all sorts of database applications. Because of the
common ancestry in the form of the InterBase 6 source code, many solutions can be implemented on
both platforms without any problems. However Version 2 of the Firebird Server has recently set new
standards, introducing many helpful functions that are unfortunately missing in InterBase 7.5. However
a replication facility is not included in either platform. This article illustrates how a replication can be
created with the aid of IBExpert3.

What is replication?

The German-language Wikipedia offers a concise definition: "Replication is a duplication of data. The
data base of the replicated data is, as a rule, identical with the original."

We need to distinguish between synchronous replication and asynchronous replication. Whilst the
synchronous replication ensures that in the case of a fault or error, the database server can be
immediately replaced by the replicated backup server and users can continue work without any
disruption, an asynchronous replication makes sense when the databases and their servers are not
always in the same network. An asynchronous replication is typically used for field staff and their
laptops, or when branches of a company are not always connected to the main server by a dedicated
line.

There are many further applications for replicated data, for example, a cluster can be constructed, by
which multiple database servers can be interconnected to distribute the burden. Although there are
various commercial suppliers offering replication solutions in the Firebird and InterBase world, a
customized implementation has the advantage that it is possible to fulfil considerably more individual
needs and wishes, at the same time saving license fees.

Fundamentals

The basis for a replicable database should always be a consequently constructed data model. The
author's preferred solution is based on a primary key ID field, datatype BIGINT in every table and a
consequent naming convention of foreign key fields in the form: TABELLE_ID. All primary keys are
always created from a single generator.

This may initially appear somewhat unusual, but it does offer distinct advantages for replication and for
any other subsequent extensions. Should existing databases need to be made replicable, existing
tables can optionally be supplemented by a replication ID field or parallel tables filled using triggers.

The mechanisms presented here are based on the preferred ID model with a common generator. All
SQL commands are accommodated on the freely available Firebird Server. Necessary alterations for
deployment on the InterBase server are explicitly mentioned.

In order to construct a replication, it is initially vital that absolutely all data alterations in the database
are logged securely. Whilst other, supposedly transaction-safe database systems clearly produced
gaps when rolling back, the Firebird and InterBase server are always transaction safe even in the case
of trigger operations. Therefore corresponding triggers are created for existing tables, which log all
insert, update and delete operations on each table.

The log is written in the following table:

CREATE TABLE IBE$LOG (
 ID BIGINT NOT NULL PRIMARY KEY,
 USR VARCHAR(30) default current_user,
 TS TIMESTAMP default current_timestamp,
 SQL VARCHAR(32000),
 IDX BIGINT,
 DAT BLOB SUB_TYPE 0 SEGMENT SIZE 16384
);

Bidirectional Replication for InterBase and Firebird.doc Page 1/6 - 27.06.2006

Although it is not always recommendable to use very large VARCHAR fields, this simplifies the model
presented here. An autoincrement trigger can be created using IBExpert for the ID field, the value of
which should be fetched from a generator, called ID. USR and TS are automatically filled in with the
user name and timestamp. The complete SQL source code is stored in the SQL field, which will
execute the identical insert, update and delete operations. This will be later exchanged between the
databases concerned as part of the replication, and executed on the replicated system. The IDX field
is designed to be an auxiliary field for the associated primary key. This can later be used to easily
ascertain the history of a data set with the ID 123. Altered blob data is stored by means of special
triggers for the replication in the DAT field.

To avoid global conflict of allocated primary keys, all ID generators are set at different start values on
all servers concerned; Server A starts at 1 billion, Server B at 2 billion etc. As generators return a 64
Bit value, 16 billion participating replication servers could each generate 1 billion globally unique IDs
without any conflict. Alternatively the offset between the IDs on each server can of course be
increased accordingly by reducing the number of replication servers involved. The author considers
the popular alternative method based on GUIDs disadvantageous, because the ID method can also be
used for other solutions, for example, that data may only be altered on the server where it was
created.

Transaction Log

It is wise to automate trigger creation, so as to be armed for later data model alterations. Due to the
commands available in Firebird, it is possible to do this within a stored procedure. The absence of the
EXECUTE STATEMENT command in InterBase means that the source code needs to be executed
using IBExpert's IBEBlock technology, as this method enables the InterBase server to handle such
language elements.

The INITLOG procedure initially begins with a loop, extracting all table names from the system table,
RDB$RELATIONS, which do not contain the dollar sign:

select f_rtrim(rdb$relation_name) from rdb$relations
where rdb$relation_name not containing '$'
 INTO :V$RELATION_NAME

Then the source code for the first AFTER INSERT trigger for the first table found begins in the
following statement:

sql='RECREATE TRIGGER IBE$'||V$RELATION_NAME||'_AI FOR '||
V$RELATION_NAME||' '||f_crlf()||
 'ACTIVE AFTER INSERT POSITION 32000 '||f_crlf()||
 'AS '||f_crlf()||
 'declare variable sql varchar(32000); '||f_crlf()||
 'begin '||f_crlf()||
 ' SQL=''INSERT INTO '||V$RELATION_NAME||'(';

Using the f_crlf UDF, from the FreeAdhocUDF library4, a line feed is inserted into the trigger source
code, without which the trigger would function, but nevertheless be extremely confusing.

In the following loop all fields in the current table are selected from the RDB$RELATION_FIELDS and
RDB$FIELDS tables, whose type does not equal 261. Type 261 is for blob fields, which need to be
treated separately later on.

 komma='';
 for select f_rtrim(rdb$relation_fields.rdb$field_name)
 from rdb$relation_fields
 join rdb$fields on
rdb$relation_fields.rdb$field_source=rdb$fields.rdb$field_name and

Bidirectional Replication for InterBase and Firebird.doc Page 2/6 - 27.06.2006

rdb$fields.rdb$field_type<>261
 where rdb$relation_name=:v$relation_name
 into :v$field_name
 do
 begin
 sql=sql||komma||v$field_name;
 komma=',';
 end
 sql=sql||') values (';
 komma='';

A comma-separated list of all field names is generated due to the previously empty variable and the
comma variable defined in the loop, as required for an INSERT command. Then another sweep is
made through the field list, in which the instance variable NEW. is prepared with the appropriate
exclamation marks for the second part of the trigger source code. This part, due to lack of space here,
can be found in the sample script5.

This is now followed by the command to write the SQL command out of the trigger into the table
IBE$LOG. With the subsequent request using the command, EXECUTE STATEMENT :SQL, the trigger
source code is executed from the procedure, so creating the trigger.

sql=sql||')'';'||f_crlf()||
 ' insert into ibe$log(sql,idx) values (:sql,new.id);'||f_crlf()||
 'end;';
execute statement :sql;

Blob data

In the subsequent parts of the script, the update and delete triggers are constructed and generated in
a similar way. Finally extra triggers are then created for each blob field, because only data should be
logged which has actually been altered. For this purpose all field and table names with the type 261
are selected.

FOR
 select

f_rtrim(rdb$relation_fields.rdb$relation_name),f_rtrim(rdb$relation_fields.
rdb$field_name)
 from rdb$relation_fields
 join rdb$fields on
rdb$relation_fields.rdb$field_source=rdb$fields.rdb$field_name
 where rdb$relation_fields.rdb$relation_name not containing '$'
 and rdb$fields.rdb$field_type=261
 INTO :V$RELATION_NAME, :V$FIELD_NAME
DO
BEGIN
 sql='RECREATE TRIGGER IBE$'||V$RELATION_NAME||V$FIELD_NAME||'_AI FOR '||
V$RELATION_NAME||'
 '||f_crlf()||
 'ACTIVE AFTER INSERT POSITION 32000 '||f_crlf()||
 'AS '||f_crlf()||
 'begin '||f_crlf()||
 ' if (new.'||V$FIELD_NAME||' is not null) then insert into
ibe$log(sql,idx,dat) values
 ('''||V$RELATION_NAME||'.'||V$FIELD_NAME||''',new.id,new.'||
V$FIELD_NAME||');'||f_crlf()||
 'end;';
 execute statement :sql;

Bidirectional Replication for InterBase and Firebird.doc Page 3/6 - 27.06.2006

The transaction log can now be activated in the database by executing the Firebird procedure
INITLOG or in InterBase using the appropriate IBEBlock command. If data model alterations are to be
made, it is wise to first deactivate this transaction log, as this way all references to the tables used will
be deleted again. To this effect, the DROPLOG procedure is implemented in the sample script.

Replicating the transaction log

The actual replication, i.e. the data exchange from the transaction log in the correct order, now begins
with an IBEBlock. An IBEBlock is a special extension within the IBExpert product family, which
enables additional commands for the handling of scripts. An IBEBlock also offers commands for
InterBase, which are not otherwise possible within a procedure, for example, the EXECUTE
STATEMENT command. Furthermore it is possible to make a connection to multiple databases in an
IBEBlock script. Replication can also optionally be carried out with all ODBC databases using the
integrated ODBC port. Such IBEBlock commands may also be fully incorporated into your own
applications using the DLL or EXE distribution licenses.

IBEBlock first makes the connections to the databases involved:

execute ibeblock
 as
 begin
 create connection src dbname 'localhost:c:\src.fdb'
 password 'repl' user 'REPL'
 clientlib 'fbclient.dll';

 create connection dest dbname 'localhost:c:\dest.fdb'
 password 'repl' user 'REPL'
 clientlib 'fbclient.dll';

After the connections have been made it is possible to switch backwards and forwards between any of
the databases, using the USE command. The following loop now selects all entries in the IBE$LOG
table in the source or reference database and inserts them into the IBE$LOG table in the target
database. In order to avoid re-replicating data that has already been transferred, a table, in this
example IBE$TRANS, is referenced, in which the ID from IBE$LOG is entered following successful
data transmission. The user REPL was used for the replication, because this way it is possible to
recognize which data have come via the replication and therefore do not need to be replicated back
again.

 use src;
 for select id, usr, ts, sql, idx, dat
 from ibe$log where usr<>'REPL'
 and not exists (select ibe$trans.id from ibe$trans where
ibe$trans.id=ibe$log.id)
 into :id, :usr, :ts, :sql, :idx, :dat
 do
 begin
 use dest;
 insert into ibe$log(id, ts, sql, idx, dat)
 values (:id, :ts, :sql, :idx, :dat);
 if (sql not starting with 'BLOB ') then execute statement :sql;
 commit;
 use src;
 insert into ibe$trans(id) values (:id);
 commit;
 end

The approach to be taken when replicating blob data can be found in the sample script5. This also
demonstrates the procedure for bidirectional replication. Using this technology little effort is needed to
supplement a system, which is capable of exchanging data for asynchronous replication using packed
blob data and is sufficient for large data quantities, even when low band widths are used. It is also

Bidirectional Replication for InterBase and Firebird.doc Page 4/6 - 27.06.2006

possible on a quick backbone to construct an extremely rapid and reliable database cluster using the
InterBase/Firebird Event Alerter technology.

The customizable scripts can be implemented for partial replication, by using any number and
combination of rules. In this way it is possible to distribute data quantities to various servers according
to logical criteria. For example, the customer base can be distributed to all servers, whilst the order
data is only copied to country-specific databases or servers. Or the inverse direction can be used to
combine and consolidate data from multiple databases.

Bidirectional Replication for InterBase and Firebird.doc Page 5/6 - 27.06.2006

1 www.firebirdsql.org
2 www.borland.com
3 www.ibexpert.com
4 www.ibexpert.com/download/udf/FreeAdhocUDF.zip
5 www.h-k.de/download/repl2006.zip

http://www.h-k.de/download/repl2006.zip
http://www.ibexpert.com/download/udf/FreeAdhocUDF.zip
http://www.ibexpert.com/
http://www.borland.com/
http://www.firebirdsql.org/

