
4th Worldwide Firebird Conference 2006, Prague, Czech Republic

Martijn Tonies

Upscene Productions
Database Tools for Developers

Database Workbench, LogManager Series, Advanced Data Generator,
InterXpress for Firebird

http://www.upscene.com

Stored Procedures, triggers and views – why and how

Session: HOWTO-OPL301-R

Overview
• What are Stored Procedures (SPs) and Triggers?

• Why use SPs and Triggers?

• SP and Trigger structure

• What can be done by SPs and Triggers?

• New PSQL functionality in Firebird 2.0

• Extending the PSQL language, now and in the future

• Protecting your SP and Trigger source code

• What are views, why use views?

• Pitfalls

• A re-factoring example using SPs and Views

Introduction
● Anyone familiar with SPs and/or Triggers?

– In Firebird? In other DBMSses?
– Firebird SPs & Trigger language: PSQL

● Two-tier, multi-tier?
– Where do SPs fit?

What are Stored Procedures & Triggers?
● SQL-like code (PSQL) stored and inside your database

and executed by the DBMS
● SPs are executed by a client application or triggers
● Triggers are “triggered” by DML operations
● Each SP or Trigger can execute multiple statements

Why use SPs and Triggers?
● Security concerns

– Don't allow direct access to tables
– Hide tables as source for data
– Allow 3rd parties access to certain procedures only

● Easier coding
– The same code runs on all platforms for Firebird server
– Simpler client code
– Access the same functionality from different programming

languages (any language that can access Firebird)

Why use SPs and Triggers? (continued)
● Add functionality without modifying applications

– Functionality that should be available for all applications
– Consistency across applications

● Eg: auditing (like our IB LogManager product)
● pseudo “auto-inc” fields:
BEGIN

IF ((NEW.ID IS NULL) OR (NEW.ID = 0))
THEN NEW.ID = GEN_ID(mygenerator, 1);

END
● Easier maintenance/refactoring

– Ability to change database structure without modifying
applications

Why use SPs and Triggers? (continued)
● Why use triggers?

– More complex input validation
– To ensure operations happen (eg: the autoincrement)
– Ensure defaults (instead of relying on DEFAULT attribute)
– Business rules enforcement
– Consistency across applications

Stored Procedure and Trigger Structure
● A procedure has a header and a body

– The header declares the parameters, both input and output
– The body defines local variables and holds the statements to

execute
– A body can be a single statement or a compound statement

(BEGIN..END) with multiple statements

CREATE PROCEDURE MyProcedureName (MyInput INTEGER)
RETURNS (MyOutput VARCHAR(10))

AS
BEGIN

MyOutput = CAST(MyInput as VARCHAR(10));
END

Stored Procedure and Trigger Structure
● A trigger also has a header and body

– The header defines on what table the trigger should be
created, the timing and actions

– The body is the same as with procedures

CREATE TRIGGER CUSTOMERS_ID FOR CUSTOMERS ACTIVE
 BEFORE INSERT
AS
begin
 if ((new.CUSTID is null) or (new.CUSTID = 0))
 then new.CUSTID = gen_id(CUSTOMERS_GEN, 1);
end

What can be done by SPs & Triggers?
● Short answer: A LOT.

What can be really done by SPs & Triggers?
● Data Manipulation Language (DML) operations

– INSERT, DELETE, UPDATE
INSERT INTO mytable (col1, col2)
VALUES ('test', 4);
DELETE FROM mytable
WHERE ID < :myvariable;

– Singleton SELECT (to fetch data values)
SELECT mycolumn, anothercolumn
FROM mytable
[WHERE ...]
INTO :variable, :variable2;

What can be really done by SPs & Triggers?
● Dynamic SQL (EXECUTE STATEMENT)

– Create a SQL statement by concatenating a string
– Can also execute DDL, unlike normal PSQL
– Can be used as a singleton select

EXECUTE STATEMENT 'delete from mytable';
sqlstr = 'delete from mytable ';
EXECUTE STATEMENT sqlstr || ' where mypk = 10';

What can be really done by SPs & Triggers?
● Cursor Loops

– FOR SELECT ... DO [BEGIN ... END]
● Cycle over a resultset, can update current row

– DECLARE CURSOR .. OPEN, FETCH (Firebird 2)
● Cycle over a resultset, fetch more than 1 row if needed via explicit

“fetch” command

– Dynamic SQL (FOR EXECUTE STATEMENT ... DO)
● Same as “FOR SELECT”, but with a dynamic statement

– Often used for SELECT-able procedures

What can be really done by SPs & Triggers?
● Branching

– IF (<expression>) THEN ... ; [ELSE ... ;]
– Allows you to create complex logical statements
– Example:

IF (date_column IS NULL)
THEN date_column = CURRENT_DATE;
ELSE IF (date_column > CURRENT_DATE)
THEN EXCEPTION date_error;

● Call procedures
EXECUTE PROCEDURE CUSTOMERS_I (custid, company_name,
 contact_firstname, contact_lastname, contact_email,
 contact_phone, 'T');

What can be really done by SPs & Triggers?
● Controlled exception handling

– Catch database exceptions when you can handle them
– Avoid needless exceptions being reported to the client
– Add logic to retry your action (eg, in case of lock)
– Exceptions can be re-raised in Firebird 1.5

● Create your own exceptions
– Allows you to raise exceptions
– Check exceptions in your client application

● 3 exception types (besides ANY):
– GDSCODE, SQLCODE, user defined

What can be really done by SPs & Triggers?
● Events

– A-synchronous server-to-client calls
– Use EVENTs to signal the client
– Client has to register interest in a specific named event
– Examples:

● Process data and continue the application, signal an event when
ready

● Allow client applications to refresh “browse” screens, avoid polling

What can be really done by SPs & Triggers?
● WHILE loop

– Logical loop, while <expression> = true, do loop
– DO <statement> or <compound statement>

● LEAVE <label> to exit a loop (Firebird 2)
● EXIT to exit the procedure/trigger

What can be really done by SPs & Triggers?
● Virtual Tables/SELECT-able Procedures

– Keyword: SUSPEND
– Can return 1 result set of the specified structure
– Output parameters act as “columns” in the result set
– Can have input parameters

CREATE PROCEDURE WHILE_EXAMPLE returns (POUT_VALUE Integer)
AS
DECLARE VARIABLE i integer;
begin
 i = 0;
 while (i < 10)
 do begin
 pout_value = i;
 i = i + 1;
 suspend;
 end
end

What can be really done by SPs & Triggers?
● Triggers are different

– No SUSPEND possible
– NEW and OLD context variables
– For multi-action triggers, check which action if firing

IF (DELETING) THEN ...
– Raising exceptions will cancel insert/delete/update

What can be really done by SPs & Triggers?
● PSQL (Procedural SQL)

– Easy-to-learn
– Powerful
– Keep your code modular and let procedures call other

procedures
● Debugging can be hard

– Firebird does not provide a debugging interface
– Several developer tools emulate Firebirds behavior when

debugging procedures

Extending the PSQL language
● External Functions

– Also called “user defined functions”
– In an external dynamic loadable module (dll/so)
– Can accept up to 10 parameters
– Must be declared on a per-database basis
– Do NOT have a database context (so no transaction)
– Should not call back into the database
– Several free ware libraries are available on the internet
– External libraries have to be compiled for the server platform

New PSQL functionality in Firebird 2.0
● Sequence support according to SQL 99

– NEXT VALUE FOR <sequence name>
● INSERT INTO ... RETURNING clause
● ROW_COUNT for SELECT statements
● RDB$SET_CONTEXT & RDB$GET_CONTEXT

Extending the PSQL language
● Future ideas and implementations

– Using Java in Stored Procedures
– Stored Functions
– Using .NET stuff
– Fyracle
–

Protecting your source code
● System tables have stored source code
● Stored source code is for reference only
● Server uses BLR to execute your code
● Clearing the source code hides your source

– RDB$PROCEDURES.RDB$PROCEDURE_SOURCE
– RDB$TRIGGERS.RDB$TRIGGER_SOURCE
– RDB$FIELDS.RDB$COMPUTED_SOURCE
– RDB$RELATIONS.RDB$VIEW_SOURCE

What are views?
● “Relations” are Tables and Views

– Table is a physical relation
– View is a logical relation
– Inserts and updates are possible, automatically or by using

triggers
● SELECT

Why use views?
● Security concerns

– Don't allow direct access to tables
– Hide tables as source for data
– Allow 3rd parties access to certain views only

● Easier coding
– Simpler client code
– Modify the underlying table structure without affecting

applications

Pitfalls when using Stored Procedures
● Don't forget SUSPEND for SELECT-able SPs
● When not to use a SELECT-able SP
● GRANTs

Examples
● Procedure to insert or update data
● Business rules enforcement by using triggers/checks

– No more changes to an invoice once approved
– Make sure an invoiced order belongs to the

● Data processing on the server
– Change all product prices according to given percentage

● Re-factoring example
– From 1 contact per customer, to multiple contacts

Questions?

