
Firebird Future Development : What to Expect? 
by Dimitry Yemanov, 2005 

1. Review of Firebird 2.0

Some time ago, many of our users were surprised by the number of features released in Firebird 1.5. Honestly, 
before preparing this paper, I didn't count new features in Firebird 2.0 and I don't have a clue whether it's superior
to the version 1.5 in this aspect or not. But, in my opinion, the major benefit of the version 2.0 is not its feature set.
"What then?", - you ask. I'd describe Firebird 2.0 as "the version which removes the annoying limits". Sounds not 
so modest, I know. Let me explain better. No doubt that Firebird has a nice multi-generational architecture and a 
rich SQL language, an embedded usage and a good performance. But I'm sure almost everyone stepped on some 
internal limitations that worried or even shocked you. To name a few (in no particular order):

Undocumented table limit of about 35GB, an overflow may cause data corruption
Removing (garbage collecting) nodes from a non-selective index is extremely slow
Bigger page cache often means slower performance
Optimizer is not able to choose a good plan in many cases
International support is weak, a lot of bugs in the Unicode/MBCS handling
Lack of a fast backup/restore mechanism
Weak security and many known vulnerabilities
Requirement of exclusive database access for referential integrity declarations
Too few built-in functions
Unreliable database shutdown

Some of them could be of critical priority for your business, others are just annoying. Anyway, I'm glad to report 
that Firebird 2.0 eliminates most of the aforementioned issues and significantly reduces the impact of others. As for
me, this is more important than declaring new language features. But considering also tons of bugfixes and enough
new features, Firebird 2.0 definitely represents a major release of your favourite RDBMS. More robust, more feature
complete, faster and much more friendly to non-ASCII users.

Of course, there are limits that still exist and many features we don't support yet. But we should have some room 
for future improvements, shouldn't we? We'll talk about the future development a bit later.

Well, for those who're interested in numbers, let's read the WhatsNew document or Release Notes and make a 
summary of total changes per version:

Version 1.0: 32 improvements, 55 bugfixes
Version 1.5: 58 improvements, 94 bugfixes
Version 2.0: 82 improvements, 140 bugfixes

Note: the version 2.0 statistics represents its current state, i.e. Beta 1 release. 

Impressive, don't you think so? Obviously, Firebird 1.5 was developed longer than Firebird 1.0 and the same 
appears to be true for Firebird 2.0. But at least you see what the development time is spent for.

2. Roadmap of future versions

Speaking about the short-term plans, our primary goal is to merge two codebases (Firebird 2.0 and Vulcan) in order
to release Firebird version 3.0. It will be based on the Vulcan tree and will contain its modular architecture and new
features, as well as all improvements made in Firebird 2.0. The key features of the Vulcan codebase are:

Globally refactured code
Fine-grained multithreading
Unified provider based architecture
Flexible configuration mechanism
Database level authentication and enhanced security management
Internal DSQL implementation

As both Firebird 2.0 and Firebird Vulcan releases are going to co-exist in the next year, you may ask why version 
3.0 is numbered as a major release and what else (except of features already done in both codebases) it will 
contain. A good question. As we want to shorten the 3.0 release cycle as much as possible, no completely new 
development is expected to happen in that version. But we need to keep our users interested, so something new 
should be introduced. Solution is simple: the 3.0 release is going to incorporate all the work done inside 
independent branches. As you perhaps know, there are some improvements done by various Firebird developers 
that didn't go into the 2.0 release due to time constraints. Some of them are included and being tested in Fyracle, 
others are still in private trees. Also, we still have a few features in Yaffil that requires backporting into Firebird. 
Everything mentioned above is exactly the new stuff you'll see in version 3.0. Let's see what has been already 
done:

Common tables expressions and recursive queries (SQL-99 compliant)
Developed by: Paul Ruizendaal
Current state: Completed
Global temporary tables (SQL-99 compliant)
Developed by: Vlad Horsun
Current state: Completed



External procedures / functions (SQL-99 compliant)
Developed by: Eugene Putilin, Roman Rokytskyy, Vlad Horsun
Current state: Partially done, requires the callback API discussion
New built-in functions (string, math, binary, date/time)
Developed by: Oleg Loa
Current state: Completed, although requires some changes

These features are the major candidates to be included into Firebird 3.0, but there are others (less important) as 
well.

As soon as version 3.0 will be released for public testing, development of the next version will begin. We don't 
have a decision about version numbering yet, so it could be 3.5 or 4.0 or whatever else. For the duration of this 
talk, I'll be calling it "version 3.0+", where the plus sign simply means "the next version". Version 3.0+ is going to 
have major ODS changes as well as a lot of administration, tracing, security, performance and SQL improvements. 
Most probably, it will also contain an updated remote protocol implementation. Now it's a bit early to say what 
exactly will be included in that release, but you'll find some hints a bit later.

If you'd ask me to outline the generic development priorities, they would be:

Reliability and safety (bugfixing, guaranteed recovery, security improvements)1.
Administration and monitoring facilities2.
Compliance with the SQL specification3.
Performance (both algorithmical and optimizer decisions)4.
Language enhancements5.

Now a few words about the 2.0 point releases. First, our usual maintenance schedule will definitely cover the 2.0 
product line, so please expect 2.0.1, 2.0.2, etc releases (containing bugfixes) every few months. As always, these 
point versions will consist of changes backported from the active development branch. So, if you see your 
"favourite" bug fixed in version 3.0, feel free to ask developers about porting it into the next maintenance release 
of 2.0.x. Second, I'd expect some of the scheduled 3.0 features (e.g. GTT implementation or WITH [RECURSIVE] 
code) to be ported into the 2.0 HEAD branch before the merge in order to make a 2.1 minor release possible in the 
case of noticable delay with the 3.0 development.

Recalling everything said above, the timetable should look like:

2005:

Release 2.0 RC and fork the 2.0 HEAD to create the release branch
Port some changes from independent trees to HEAD
Fork the Vulcan HEAD to create the 3.0 development branch

2006, 1st quarter:

Release Firebird 2.0 Final and Firebird Vulcan Final

2006, 2nd quarter:

Release Firebird 3.0 Beta
Fork the 3.0 HEAD to create the 3.0+ development branch

2006, 3rd quarter:

Release Firebird 3.0 Final

2006, 4th quarter:

Release Firebird 3.0+ Beta

The key point of this roadmap is when we're able to release Firebird 2.0 and Firebird Vulcan. And this is exactly the 
point where your help with testing/feedback allows us to move faster.

3. What features to expect?

This part of our talk is dedicated to the project activities that we'd expect to see in the not so distant future. To 
follow the list easily, they're grouped by category, similar to our RFE tracker.

Every work has two associated parameters: priority and complexity. The priority value is based on user wishes, it's 
set up after looking at various polls and forum/newsgroup discussions. In other words, it shows how much our 
users want a particular feature. Also, this value depends on our analysis of the features offered by our 
competitors. The complexity value is based on time/effort estimates made by the core team. "None" means that all 
the required work is already done (in some code branch) and we just need to backport and test it. 
"Implementation" means that the feature has already been discussed and agreed on, but it still requires some 
minor discussions and the actual coding. "Design" means that we have a basic agreement and some vision of the 
things, but the work hasn't been discussed in depth yet and hence we don't have any implementation plan. 
"Research" means that the work requires serious analysis before discussing its design and implementation 
specifications.

Administration / Tracing / Monitoring 



Monitoring via API and/or special tables

Perform a "snapshot" monitoring (i.e. at the given moment) of the internal activities inside the engine.
Obvious objects of such a monitoring are: databases, attachments, transactions, active requests, resource 
(memory, CPU) usage, etc.

priority = high
complexity = design/implementation
Asynchronous statement cancellation / timeouts

Force any of the following actions: cancel a running statement, rollback a transaction, kill an attachment.
Allow setting timeouts for SQL statements. Should be available at least at the API level.

priority = high
complexity = implementation
Detailed logging/audit

Allow to log some events happening on the server. These could be: successful/rejected authentification
attempts (containing client host info), prepared/executed SQL statements, committed/rolled back 
transactions, etc. We need API to set up the required events and to retrieve the audit log.

priority = medium
complexity = design
Detailed SQL tracing/profiling

Show detailed access path (at the RSB tree level) for every retrieval, count rows (profile CPU time, etc) per
every node. Available runtime statistics should be extended.

priority = medium
complexity = design/implementation
DDL level and global triggers

Allow triggers ON CREATE/ALTER/DROP. Implement triggers attachment and transaction level triggers running
in autonomous transactions.

priority = medium
complexity = design
PSQL debugging extentions/hooks

Allow PSQL debugging via introducing: looper breakpoints, handler callbacks, retrieval of context data, etc.

priority = low
complexity = research

Security

Embedded users / SQL users management

Allow in-database users management.

priority = high
complexity = none (done in Vulcan)
User permissions for metadata

Protect all metadata with security classes. Implement metadata-level permissions. Add database-level
permissions like BACKUP, DROP, etc.

priority = high
complexity = design
Pluggable authentication modules

Enable using of custom authentication mechanisms (e.g. native OS ones).

priority = medium
complexity = design
Security groups

Design group-based security as an alternative to the existing role-based one.

priority = medium
complexity = research
Database encryption

Allow optional encryption of database files. Keys management is an open question here.

priority = medium



complexity = research

Language extentions

Schemas/namespaces

First, it significantly reduces a cost of the issue with short metadata names. Second, it simplifies
administration as a number of different databases could be united into a single file. Third, it finally allows us 
to be fully SQL-92 (entry level) compliant.

priority = high
complexity = research
Native long numeric data type

Implement long exact numeric data type (with precision longer than 30 decimal digits) and appropriate BCD
arithmetics.

priority = high
complexity = research
More built-in functions

The SQL-99 (or later) ones (those of major importance for us) must be implemented first. Then we need
users feedback about other ones.

priority = high
complexity = design/implementation
Temporary tables / transient datasets

Implement temporary schema objects and/or datasets. SQL-99 compliance is required, extentions are
welcome.

priority = high
complexity = design/implementation (partially done in Fyracle)
Longer metadata names

Up to 128 unicode characters.

priority = medium
complexity = design
SQL functions

CREATE/ALTER/DROP FUNCTION as per SQL-99.

priority = medium
complexity = implementation
Domains everywhere

Allow usage of domains in PSQL parameters and variables, as well as in the CAST function.

priority = medium
complexity = design
Recursive queries

Implement SQL for recursive retrievals. Make it consistent with the SQL specification.

priority = medium
complexity = none (done in Fyracle)
Regular expressions

Allow usage of regular expressions in search conditions. Add some special syntax (a new predicate) for this
purpose.

priority = medium
complexity = design/implementation
TEXT BLOB compatible with [VAR]CHAR

Allow BLOB SUB_TYPE TEXT to be compatible/interchangable with string data types. Allow text blobs in all
built-in functions.

priority = medium
complexity = design/implementation
Deferred constraints

Implement commit-time constraint checking as per SQL specification.

priority = low



complexity = design

Performance / Optimizer 

Faster outer joins

Implement the merge algorithm for outer joins.

priority = high
complexity = implementation
Optimizer improvements

Fix known bugs/limitations, better optimizer decisions, more data statistics

priority = medium
complexity = design/implementation
More access paths

Consider implementation of hash join / hash aggregate and other retrieval algorithms used in the competitor
RDBMS.

priority = medium
complexity = research
More effective sorting

Implement partial sorting to spead up FIRST-limited retrievals. Consider sorting recno's instead of entire
rows.

priority = medium
complexity = design
Optimized network protocol

Avoid sending a lot of unneeded data (buffer tails). Consider implementing protocol batches (e.g. prepare +
info). Compress spaces more effectively.

priority = medium
complexity = research

Maintenance / Recovery 

Reliable logical backup

The only case of unrestorable backup should be a physically corrupted backup. Primitive objects (generators,
UDFs, etc) must be restored in the beginning. Computed columns and validation constraints must be 
restored at the end. The engine should reject inconsistent data instead of transform them when reading 
(e.g. no value -> NULL). GBAK should allow partial restore, driven by switches or interactively.

priority = high
complexity = design
Point-in-time recovery

The engine must have an optional ability to maintain a redo log in order to roll it over the last logical backup.
No data loss is acceptable.

priority = high
complexity = research

Generic / Architecture 

SMP support in SS

Support effective fine grained multi-threading in the SS architecture.

priority = high
complexity = none (done in Vulcan)
Compiled statements cache

Support caching/reusing of compiled statements.

priority = high
complexity = implementation (partially done in Vulcan)
Statement/transaction consistency

Solve the known inconsistencies in verbs/transactions. Mostly, this covers blr_for behaviour in
INSERT/UPDATE/DELETE statements. Make read-committed transactions compliant with the SQL specification.



priority = high
complexity = design
External data sources / database links / cross-database SQL

Allow retrievals from external data sources. Provide a few drivers (native FB, JDBC, ODBC) in the distros. Add
DDL to declare and DML to use such sources. Implement optimization of retrievals for native data sources.

priority = high
complexity = research
External functions/procedures

Allow to create procedures/functions written in non-PSQL languages. Provide a few drivers (cdecl, Java, .NET)
in the distros.

priority = high
complexity = design/implementation (partially done in Fyracle)
Full-text search

Implement FTS features inside the engine or add API to plug the external FTS engines in. FB seems to be the
only one RDBMS that don't have this feature yet.

priority = medium
complexity = research
Clustering

MySQL supports clusters (AFAIK, only shared-memory so far), PostgreSQL shared-disk implementation is in
the way. More and more buzz about this feature around the world. We should compete.

priority = medium
complexity = research
Bi-directional indices

Allow reversed index navigation to use ASC-indices for DESC sorting and vice versa.

priority = medium
complexity = implementation
Referential integrity without indices

Implement (optionally) foreign keys that are not enforced by indices. Also provide an ability to reuse the
existing index for a constraint.

priority = medium
complexity = design
Bulk load/import

Implement effective massive load ability. Provide utility/syntax to use different input formats (csv, xml
schema, etc) for import.

priority = medium
complexity = design
Bi-directional cursors

Consider implementation of scrollable cursors inside the engine or provide a thin layer at the top of the RSB
hierarchy to implement the feature via the caching.

priority = low
complexity = research
XML integration

Provide at least fetch to XML and insert from XML abilities. Consider having BLOB SUB_TYPE XML and
implementing XPath queries.

priority = low
complexity = research

Obviously, the aforementioned list is not complete, it includes only the changes that we consider mostly important. 
If this list misses your favourite wish, speak now!

Now let's create a matrix where most preferrable and easy-to-do features are placed in the top-left corner and 
most hard-to-implement and/or less wanted ones are in the bottom-right corner. If you'll be moving from one of 
these corners to another you'll see a most probable feature implementation roadmap. Recalling what has been 
said before, we could imagine a more detailed roadmap:

Firebird 3.0 (the merged version):

Monitoring
Asynchronous statement cancellation



Embedded users / SQL users management
More built-in functions
Temporary tables
SQL functions
Recursive queries
Faster outer joins
SMP support in SS
Compiled statements cache
External functions/procedures

As you can see (and as it has been stated earlier), version 3.0 is expected to include the work already done and a 
few features that are highly wanted and relatively easy to implement. Everything else tends to slow the 
development down and hence is excluded from the above list.

Firebird 3.0+ (the next major version):

Detailed logging/audit
SQL tracing/profilingUser permissions for metadata
Pluggable authentication modules
Security groups
Long exact numeric implementation
Domains everywhere
Regular expressions
TEXT BLOB compatible with [VAR]CHAR
Reliable logical backup
Optimizer improvements
Statement consistency/atomicy, read committed compliance
Optimized network protocol
Bi-directional indices
Referential integrity without indices
Bulk load/import

It would also be excellent to design schemas/namespaces and longer metadata names for 3.0+, but no promises 
here. The same for external data sources and deferred constraints.

Firebird 3.0++ (something we don't have a schedule for yet):

PSQL debugging extentions/hooks
Database encryption
More access paths
Full-text search
Clustering
Bi-directional cursors
XML integration

Of course, some intermediate or minor releases may happen in the meantime, as we'll try to make the release 
cycles shorter. As soon as the details are discussed and agreed on among the project admins, you'll see both an 
actual short-term roadmap and an expected long-term roadmap on our site.


