
1

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 1

The Firebird Project

Under the Under the HHood:ood:

Data Data AAccess ccess PPaths aths

Arno Brinkman
&

Dimitry Yemanov

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 2

The Firebird Project

Intro
Data access paths, access methods
and data streams

Access methods by function:

primary

filters

junctions

Primary methods create data streams,
others just transform them

2

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 3

The Firebird Project

Intro

Access path as a tree:

root is a result set

nodes are access methods

links are data streams

Result set

Access method
#3

Access method
#4

Access method
#1

Access method
#2

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 4

The Firebird Project

Intro
Access methods by implementation:

pipelined

buffered

Attributes of access methods:

cardinality

cost

Logical reads (page fetches) as cost units

3

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 5

The Firebird Project

Primary access methods (internal

tables)
Direct table access

Full table scan

Access via record identifier

Positioned access

Index based access

Bitmaps

Range index scan

Index navigation

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 6

The Firebird Project

Full table scan

Pages are read sequentially in their storage order –
highest throughput

Rows are processed in the pipeline mode
(one by one)

Pages are not prefetched, rows are not buffered,
no multi-block I/O

Used only when there are no indices to be applied

Reported as non indexed reads in statistics

4

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 7

The Firebird Project

Full tables scan (example)
SELECT *
FROM RDB$RELATIONS

PLAN (RDB$RELATIONS NATURAL)

STATEMENT (SELECT)
[cardinality=500, cost=500.000]

=> TABLE (RDB$RELATIONS) SEQUENTIAL ACCESS
[cardinality=500, cost=500.000]

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 8

The Firebird Project

Access via record identifier

A single row is read using its record number
(aka DB_KEY value)

Record number contains information about
data page and offset (slot) on this page

Used as implementation by other access methods,
not exposed to the optimizer

Reported as indexed reads in statistics

5

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 9

The Firebird Project

Positioned access

Used for positioned forms of UPDATE and DELETE
statements (syntax: WHERE CURRENT OF)

It’s not the same as access using RDB$DB_KEY

Works with an already fetched row (active cursor),
so no reads are actually performed

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 10

The Firebird Project

Index based access

B+ tree index with prefix compression of keys

Indices: single segment and composite

Full and partial key matches

No index-only scan due to MGA implementation

Indices allows only uni-directional scan

Selectivity of indices, assumption about uniform
distribution of values

6

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 11

The Firebird Project

Bitmaps

Effective solution to random data page I/O, no need
in clustering indices or index-organized tables

Implemented as a sparse bit array ordered by
physical record numbers

Bitmaps allow bitwise AND/OR operations to use
any number of indices for a retrieval

Uses access via record identifier to read the
selected rows

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 12

The Firebird Project

Range index scan

Index lookups, lower and upper bounds,
setting the bitmap

Full scan, range scan, equality scan, unique scan;
special meaning of the unique scan

Strict lower/upper bounds, solved in version 2.0

Redundant scanning of NULL values,
solved in version 2.0

Cost based selection strategy

7

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 13

The Firebird Project

Range index scan (example)
SELECT *
FROM RDB$INDICES
WHERE RDB$RELATION_NAME = ? AND RDB$FOREIGN_KEY = ?

PLAN (RDB$INDICES INDEX (RDB$INDEX_31, RDB$INDEX_41))

STATEMENT (SELECT)
[cardinality=2, cost=9.000]

=> TABLE (RDB$INDICES) ACCESS BY DB_KEY
[cardinality=2, cost=9.000]

=> BITMAP AND
[cardinality=2, cost=7.000]

=> INDEX (RDB$INDEX_31) RANGE SCAN
[cardinality=5, cost=4.000]

=> INDEX (RDB$INDEX_41) RANGE SCAN
[cardinality=2, cost=3.000]

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 14

The Firebird Project

Index navigation

Difference from a range scan - no bitmap

Random data page I/O, to use with care

Optimization of MIN/MAX

Index based ordering (ORDER BY, GROUP BY, etc)

Internal optimizations for search conditions:

usage of lower/upper bounds to limit the scan

usage of bitmap to avoid unnecessary row reads

8

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 15

The Firebird Project

Index navigation (example)
SELECT MIN(RDB$PROCEDURE_NAME)
FROM RDB$PROCEDURES
WHERE RDB$PROCEDURE_ID > ?

PLAN (RDB$PROCEDURES ORDER RDB$INDEX_21 INDEX (RDB$INDEX_22))

STATEMENT (SELECT)
[cardinality=100, cost=303.000]

=> TABLE (RDB$PROCEDURES) ACCESS BY DB_KEY
[cardinality=100, cost=303.000]

=> INDEX (RDB$INDEX_21) FULL SCAN
[cardinality=100, cost=203.000]
=> BITMAP

[cardinality=100, cost=3.000]
=> INDEX (RDB$INDEX_22) RANGE SCAN

[cardinality=100, cost=3.000]

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 16

The Firebird Project

Access using RDB$DB_KEY

Not officially documented,
explained on www.cvalde.net

Implemented via a singular bitmap

Behaves like a pseudo index based access:

INDEX clause in plans, but without an index name

reported as an indexed read

9

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 17

The Firebird Project

External tables

Works similarly to a full table scan

External file is read row by row,
using the current pointer (offset) value

No caching is done

External tables cannot be indexed
in the current implementation

Cardinality is not calculated and assumed
to be 10000

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 18

The Firebird Project

Procedures

Used to retrieve rows from selectable procedures

Procedure is always considered a black box, the
engine makes no assumptions about its internals

Any fetch from a procedure executes its code from
the previous stall point to the next SUSPEND
statement, then its output parameter values create
a row

Can be displayed differently in plans, depending on
Firebird version

10

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 19

The Firebird Project

Filters

These access methods transform the input data
stream accordingly to their function

Filter types by function:

Evaluation of booleans

External sorting

Aggregation

Counters

Singularity check

Record locking

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 20

The Firebird Project

Evaluation of booleans

Most common type of a filter,
used to implement clauses WHERE, HAVING, etc

Check the given search condition for every input
row and return only the satisfying rows

Always performed as deep in the access path
as possible, in order to reduce cardinality

Booleans always duplicate index range scans to
filter unnecessary rows out

11

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 21

The Firebird Project

Evaluation of booleans (example)
SELECT *
FROM RDB$RELATIONS
WHERE RDB$RELATION_NAME = ?

PLAN (RDB$RELATIONS INDEX (RDB$INDEX_0))

STATEMENT (SELECT)
[cardinality=1, cost=4.000]

=> BOOLEAN
[cardinality=1, cost=4.000]

=> TABLE (RDB$RELATIONS) ACCESS BY DB_KEY
[cardinality=1, cost=4.000]

=> BITMAP
[cardinality=1, cost=3.000]

=> INDEX (RDB$INDEX_0) UNIQUE SCAN
[cardinality=1, cost=3.000]

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 22

The Firebird Project

External sorting
Used to order the input stream if navigation via an
index cannot be applied

Implements clauses ORDER BY, GROUP BY,
DISTINCT etc, as well as creates the new index tree

Requires to read all input rows before any of them
goes to the output – buffered data source

Quick sort + merge of runs, runs are stored in the
external memory (VM or disk space)

Normal and reducing modes

12

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 23

The Firebird Project

External sorting (example)
SELECT *
FROM RDB$RELATIONS
WHERE RDB$RELATION_NAME > ?
ORDER BY RDB$SYSTEM_FLAG

PLAN SORT (RDB$RELATIONS INDEX (RDB$INDEX_0))

STATEMENT (SELECT)
[cardinality=100, cost=105.000]
=> SORT

[cardinality=100, cost=105.000]
=> BOOLEAN

[cardinality=100, cost=105.000]
=> TABLE (RDB$RELATIONS) ACCESS BY DB_KEY

[cardinality=100, cost=105.000]
=> BITMAP

[cardinality=100, cost=5.000]
=> INDEX (RDB$INDEX_0) RANGE SCAN

[cardinality=100, cost=5.000]

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 24

The Firebird Project

Aggregation
Implement aggregate functions MIN/MAX/AVG/etc,
including their usage in grouping

Keeps a single register to calculate the function

Requires an ordered input stream to perform a per
group aggregation

Intermediate reducing sorts are performed when
AVG/SUM/COUNT are evaluated in the DISTINCT
mode

Hash aggregation as an alternative algorithm

13

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 25

The Firebird Project

Aggregation (example)
SELECT RDB$SYSTEM_FLAG, COUNT(*)
FROM RDB$RELATIONS
WHERE RDB$RELATION_NAME > ?
GROUP BY RDB$SYSTEM_FLAG

PLAN SORT (RDB$RELATIONS INDEX (RDB$INDEX_0))

STATEMENT (SELECT)
[cardinality=100, cost=105.000]

=> AGGREGATE
[cardinality=100, cost=105.000]
=> SORT

[cardinality=100, cost=105.000]
=> BOOLEAN

[cardinality=100, cost=105.000]
=> TABLE (RDB$RELATIONS) ACCESS BY DB_KEY

[cardinality=100, cost=105.000]
=> BITMAP

[cardinality=100, cost=5.000]
=> INDEX (RDB$INDEX_0) RANGE SCAN

[cardinality=100, cost=5.000]

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 26

The Firebird Project

Counters

Most trivial type of filters

Return only some part of the input stream, based
on some value N of the internal counter

Used to implement clauses FIRST/SKIP/ROWS

Two kinds of this filter:

FIRST counter (returns first N rows)

SKIP counter (return all rows starting with N+1)

14

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 27

The Firebird Project

Counters (example)
SELECT FIRST 1 SKIP 1 *
FROM RDB$RELATIONS
WHERE RDB$RELATION_NAME > ?

PLAN (RDB$RELATIONS INDEX (RDB$INDEX_0))

STATEMENT (SELECT)
[cardinality=100, cost=105.000]
=> FIRST

[cardinality=100, cost=105.000]
=> SKIP

[cardinality=100, cost=105.000]
=> BOOLEAN

[cardinality=100, cost=105.000]
=> TABLE (RDB$RELATIONS) ACCESS BY DB_KEY

[cardinality=100, cost=105.000]
=> BITMAP

[cardinality=100, cost=5.000]
=> INDEX (RDB$INDEX_0) RANGE SCAN

[cardinality=100, cost=5.000]

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 28

The Firebird Project

Singularity check

Targeted to guarantee that the input stream
contains only a single row

Used to perform a runtime protection of singular
subqueries

Performs two fetches from the input stream,
returns the first row if the second fetch
encountered EOF, otherwise an error is thrown

15

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 29

The Firebird Project

Singularity check (example)
SELECT *
FROM RDB$RELATIONS
WHERE RDB$RELATION_ID = (SELECT RDB$RELATION_ID FROM RDB$DATABASE)

PLAN (RDB$DATABASE NATURAL)
PLAN (RDB$RELATIONS INDEX (RDB$INDEX_1))

STATEMENT (SELECT)
[cardinality=1, cost=1.000]

=> SINGULAR
[cardinality=1, cost=1.000]

=> TABLE (RDB$DATABASE) SEQUENTIAL ACCESS
[cardinality=1, cost=1.000]

STATEMENT (SELECT)
[cardinality=1, cost=4.000]

=> BOOLEAN
[cardinality=1, cost=4.000]

=> TABLE (RDB$RELATIONS) ACCESS BY DB_KEY
[cardinality=1, cost=4.000]

=> BITMAP
[cardinality=1, cost=3.000]

=> INDEX (RDB$INDEX_1) RANGE SCAN
[cardinality=1, cost=3.000]

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 30

The Firebird Project

Record locking

Implements pessimistic row level locking

Used only if clause WITH LOCK is specified for a
retrieval

Creates a dummy record version marked by an
identifier of the current transaction

Allowed for primary access methods only

16

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 31

The Firebird Project

Record locking (example)
SELECT *
FROM RDB$RELATIONS
WITH LOCK

PLAN (RDB$RELATIONS NATURAL)

STATEMENT (SELECT)
[cardinality=100, cost=100.000]

=> LOCK
[cardinality=100, cost=100.000]

=> TABLE (RDB$RELATIONS) SEQUENTIAL ACCESS
[cardinality=100, cost=100.000]

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 32

The Firebird Project

Junctions

These access methods are similar to filters,
but deal with multiple input streams

Junction types:

Joins

Nested iteration

One-way merge

Hash joins

Unions

17

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 33

The Firebird Project

Joins

Inner and outer joins; left, right and full outer joins

Outer (master) and inner (slave) streams

Join condition or lack or it (cross join)

Independence of inner join streams and
dependency of outer join streams,
how the optimizer controls the order of streams

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 34

The Firebird Project

Nested iteration

Also known as nested loops join or recursive join

How it works: nested iterations on input streams

High cost of duplicated inner reads, usage of an
index scan to optimize the inner retrievals

Used always when there are indices that could be
applied for a join condition

Complex AND/OR based join conditions are
supported

18

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 35

The Firebird Project

Nested iteration (continued)

Known pitfall: indices are never used for a full
outer join

How to determine extremely bad nested iterations
looking at plans

Where and why procedures are placed in the join
order

Known issue with procedures depending on other
streams via input parameters, a workaround

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 36

The Firebird Project

Nested iteration (example)
SELECT *
FROM RDB$RELATIONS R
JOIN RDB$RELATION_FIELDS RF ON R.RDB$RELATION_NAME = RF.RDB$RELATION_NAME
JOIN RDB$FIELDS F ON RF.RDB$BASE_FIELD = F.RDB$FIELD_NAME

PLAN JOIN (RF NATURAL, F INDEX (RDB$INDEX_2), R INDEX (RDB$INDEX_0))

STATEMENT (SELECT)
[cardinality=2500, cost=17500.000]
=> LOOP (INNER)

[cardinality=2500, cost=17500.000]
=> TABLE (RDB$RELATION_FIELDS) SEQUENTIAL ACCESS

[cardinality=2500, cost=2500.000]
=> TABLE (RDB$FIELDS) ACCESS BY DB_KEY

[cardinality=1, cost=3.000]
=> BITMAP

[cardinality=1, cost=2.000]
=> INDEX (RDB$INDEX_4) RANGE SCAN

[cardinality=1, cost=2.000]
=> TABLE (RDB$RELATIONS) ACCESS BY DB_KEY

[cardinality=1, cost=3.000]
=> BITMAP

[cardinality=1, cost=2.000]
=> INDEX (RDB$INDEX_0) UNIQUE SCAN

[cardinality=1, cost=2.000]

19

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 37

The Firebird Project

One-way merge

An alternative algorithm to perform a join:

input streams are independent,

but required to be ordered by the join key

streams are merged on a per row basis

by walking the binary merge tree

Allowed equality joins only, effectively performs
expression based joins, outer joins cannot be
handled

Used when a recursive join cannot be applied
effectively

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 38

The Firebird Project

One-way merge (example)
SELECT *
FROM RDB$RELATIONS R
JOIN RDB$RELATION_FIELDS RF

ON UPPER(R.RDB$RELATION_NAME) = UPPER(RF.RDB$RELATION_NAME)
WHERE R.RDB$SYSTEM_FLAG = 1

PLAN MERGE (SORT (RF NATURAL), SORT (R NATURAL))

STATEMENT (SELECT)
[cardinality=2500, cost=3000.000]

=> MERGE
[cardinality=2500, cost=3000.000]
=> SORT

[cardinality=500, cost=500.000]
=> BOOLEAN

[cardinality=500, cost=500.000]
=> TABLE (RDB$RELATIONS) SEQUENTIAL ACCESS

[cardinality=500, cost=500.000]
=> SORT

[cardinality=2500, cost=2500.000]
=> TABLE (RDB$RELATION_FIELDS) SEQUENTIAL ACCESS

[cardinality=2500, cost=2500.000]

20

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 39

The Firebird Project

Hash joins

Yet another alternative join algorithm

Implementation details:

input streams are always dependent

the inner (slave) stream is entirely read in advance,

its join keys create a hash table

every row from the outer (master) stream is probed against

the hash table

Same advantages and pitfalls as for a merge join

Wins for small inner (slave) streams

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 40

The Firebird Project

Unions

Responsible for the UNION operation

Two modes:

ALL (return everything)

DISTINCT (eliminate full duplicates of rows)

Sequentially return all rows from all input streams

In the DISTINCT mode, also applies a reducing
sorting filter to its output stream

21

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 41

The Firebird Project

Unions (example)
SELECT RDB$RELATION_ID
FROM RDB$RELATIONS
WHERE RDB$SYSTEM_FLAG = 1
UNION
SELECT RDB$PROCEDURE_ID
FROM RDB$PROCEDURES
WHERE RDB$SYSTEM_FLAG = 1

PLAN (RDB$RELATIONS NATURAL)
PLAN (RDB$PROCEDURES NATURAL)

STATEMENT (SELECT)
[cardinality=1500, cost=1500.000]
=> SORT

[cardinality=1500, cost=1500.000]
=> UNION

[cardinality=1500, cost=1500.000]
=> BOOLEAN

[cardinality=500, cost=500.000]
=> TABLE (RDB$RELATIONS) SEQUENTIAL ACCESS

[cardinality=500, cost=500.000]
=> BOOLEAN

[cardinality=1000, cost=1000.000]
=> TABLE (RDB$PROCEDURES) SEQUENTIAL ACCESS

[cardinality=1000, cost=1000.000]

Session: INTRN-A302-R
Speaker: Arno Brinkman

Slide 42

The Firebird Project

The end

Thanks for your attention.

Speaker: Arno Brinkman
Prepared by: Dimitry Yemanov

