
3rd Worldwide Firebird Conference 2005, Prague, Czech Republic

Martijn Tonies

Upscene Productions
Database Tools for Developers

Database Workbench, LogManager Series, Advanced Data Generator,
InterXpress for Firebird

http://www.upscene.com

The Hitchhikers Guide to the Firebird System Tables

Session: INTRN-A202-R

Don't panic!

Overview
• Introduction

• The Untouchables

• Single Object System Tables

• Relations & Domains

• Indices, Triggers, Constraints

• More System Tables: Procedures, External Functions

• Security

• Dependencies

• Protecting Your Source Code

Introduction
● Where do the system tables come from?

– Tables are ODS specific
– Created when the database is created

● “active tables”
– Changes to these table affect your database

Schema

CHARACTER_SETS COLLATIONS

FIELDSFIELD_DIMENSIONS RELATION_FIELDS

FORMATS

RELATIONS

VIEW_RELATIONS

PROCEDURE_PARAMETERS PROCEDURES

INDICESINDEX_SEGMENTS

RELATION_CONSTRAINTS

REF_CONSTRAINTS CHECK_CONSTRAINTS

TRIGGERS

FUNCTION_ARGUMENTS

FUNCTIONS

Several other non-related
tables…

The Untouchables
● RDB$FILES

holds 1 row for each additional or shadow file
● RDB$PAGES

holds rows for each database page
● RDB$FORMATS

holds a row for each relation
● RDB$TRANSACTIONS

holds a row for each cross-database transaction

Single Object Tables
● RDB$DATABASE

– Single row table
– Database wide (default) characterset
– Has database description in RDB$DESCRIPTION
– System generated relation ID#
– Often used as a “dummy” table
select gen_id(mygenerator, 1) as new_value
from rdb$database

select cast('test' as varchar(10))
from rdb$database

Single Object Tables (continued)
● RDB$GENERATORS

– One row per generator
– Does not store generator values

● RDB$EXCEPTIONS
– One row per user defined “exception” object
– Stores a short message for the exception, larger in Firebird 2

● RDB$FILTERS
– One row per “BLOB filter” object
– Ask Paul how to create one ;-)

Relations & Domains

CHARACTER_SETS COLLATIONS

FIELDS

FIELD_DIMENSIONS

RELATION_FIELDS

FORMATS

RELATIONS

VIEW_RELATIONS

Relations & Domains (continued)
● RDB$FIELDS – Domains

– One row per domain
● Datatype info, incl character set and collation
● Optional check constraint (source & BLR)
● Domain default
● “nullable” flag (or “not null” flag)
● RDB$DESCRIPTION for user written description for the domain

● RDB$FIELDS – Fields
– One row per non-domain field

● Datatype info, incl character set and collation

– RDB$COMPUTED_SOURCE/BLR

Relations & Domains (continued 2)
● Datatype information

827 (double)

835 (timestamp)

37 (varchar)

40 (cstring)

8261 (blob)

816 (int64)

14 (char)

413 (time)

412 (date)

410 (float)

48 (integer)

27 (smallint)

CHARACTER_LENGTHFIELD_PRECISIONFIELD_SCALEFIELD_LENGTHDatatype

Relations & Domains (continued 3)
● RDB$RELATION_FIELDS

– Overrides domain default
– Overrides domain “not null” if domain is nullable
– Overrides domain collation
– RDB$FIELD_SOURCE holds (user defined) domain name
– RDB$FIELD_POSITION
– RDB$DESCRIPTION for field description
– For views (check also RDB$VIEW_RELATIONS):

● RDB$BASE_FIELD holds the source column
● RDB$VIEW_CONTEXT holds the source table for the column

Relations & Domains (continued 4)
● RDB$FIELD_DIMENSIONS

– Array dimensions
– One row per dimension

Relations & Domains (continued 5)
● RDB$RELATIONS

– One row per table or view
– RDB$FIELD_ID holds field number for new fields
– Views have RDB$VIEW_BLR not NULL
– RDB$DESCRIPTION for use written description
– RDB$SYSTEM_FLAG = 1 tells us if it's a system defined table
– RDB$EXTERNAL_FILE filled in for external tables
– RDB$OWNER_NAME shows object owner

● RDB$VIEW_RELATIONS
– One row for each table used in a view with alias

Indices
● RDB$INDICES

– One row per index, incl system defined indices
– RDB$UNIQUE_FLAG
– RDB$INDEX_TYPE (0 = asc, 1 = desc)
– RDB$INDEX_INACTIVE
– RDB$SYSTEM_FLAG

● RDB$INDEX_SEGMENTS
– One row per index per indexed field
– RDB$FIELD_POSITION for sorting order

Triggers
● RDB$TRIGGERS

– One row per trigger
– RDB$TRIGGER_INACTIVE
– RDB$TRIGGER_SOURCE/BLR
– RDB$SYSTEM_FLAG
– RDB$TRIGGER_TYPE

● Least significant bit: before/after (0/1)
● Two bits: insert/update/delete (01/10/11)
● Repeat the above for Firebird 1.5 for each group of two bits

Constraints

RELATION_FIELDS

RELATIONS

INDICES

INDEX_SEGMENTS

RELATION_CONSTRAINTS

REF_CONSTRAINTS CHECK_CONSTRAINTS

TRIGGERS

Constraints (continued)
● RDB$RELATION_CONSTRAINTS

– One row per constraint
– RDB$CONSTRAINT_TYPE (5 types)
– RDB$INDEX_NAME

● Unique & Primary Key Constraints
– RDB$RELATION_CONSTRAINTS
– RDB$INDEX_NAME

● System defined index name
● Implementing index in RDB$INDICES

Constraints (continued 2)
● RDB$CHECK_CONSTRAINTS

– One row for each NOT NULL field
– Two rows per user defined CHECK constraint
– Zero, one or two rows for each FOREIGN KEY constraint
– RDB$TRIGGER_NAME

● NOT NULL field
● Two triggers per CHECK
● Zero, one or two triggers per FOREIGN KEY constraint

Constraints (continued 3)
● Foreign Key Constraints

– RDB$RELATION_CONSTRAINTS
● RDB$INDEX_NAME for auto-created index in “child” table

– RDB$REF_CONSTRAINTS
● RDB$CONST_NAME_UQ for “target” UNIQUE or PK
● RDB$UPDATE_RULE & RDB$DELETE_RULE

Stored Procedures

CHARACTER_SETS COLLATIONS

FIELDS

PROCEDURE_PARAMETERS PROCEDURES

Stored Procedures (continued)
● RDB$PROCEDURES

– One row per procedure
– RDB$PROCEDURE_SOURCE/BLR
– RDB$PROCEDURE_INPUTS/OUTPUTS
– RDB$DESCRIPTION for user written description

● RDB$PROCEDURE_PARAMETERS
– One row for each procedure parameter
– RDB$FIELD_SOURCE -> RDB$FIELDS (datatype info)
– RDB$PARAMETER_NUMBER for sort order
– RDB$PARAMETER_TYPE (0 = input, 1 = output)
– RDB$DESCRIPTION

External functions
● RDB$FUNCTIONS

– One row per declared function
– Function name, module, entry point
– RDB$RETURN_ARGUMENT
– RDB$DESCRIPTION

● RDB$FUNCTION_ARGUMENTS
– One row per function parameter
– RDB$MECHANISM (FREE_IT adds * -1 modifier)

● By value (0), by reference (1), by descriptor (2),
by isc descriptor (3), by reference with null (5)

– Datatype info like in RDB$FIELDS but in this table

Security
● Security is a 3 step process:

– Users (ISC4.GDB, SECURITY.FDB, SECURITY2.FDB), server
wide

– Roles (RDB$ROLES), in each database
– Grants (RDB$USER_PRIVILEGES), in each database

● Grants in RDB$USER_PRIVILEGES
– RDB$USER = grantee (User, Role, Procedure, Trigger, View)
– RDB$RELATION_NAME = grantable (Role, Table, View,

Procedure)
– RDB$USER_TYPE, RDB$OBJECT_TYPE
– GRANT ALL <> all grants

Protecting your source code
● Schema information cannot be hidden
● Engine needs BLR to execute your code
● Source code (PSQL) can be remove (hidden)

– Stored Procedures (RDB$PROCEDURES)
– Triggers (RDB$TRIGGERS)
– Check Constraints (RDB$TRIGGERS)
– Views (RDB$RELATIONS)
– Domain check constraints (RDB$FIELDS)
– Computed By field (RDB$FIELDS)

● Keep a copy of your source code!!

Questions?

3rd Worldwide Firebird Conference 2005, Prague, Czech Republic

Martijn Tonies

Upscene Productions
Database Tools for Developers

Database Workbench, LogManager Series, Advanced Data Generator,
InterXpress for Firebird

http://www.upscene.com

The Hitchhikers Guide to the Firebird System Tables

Session: INTRN-A202-R

Don't panic!

Overview
• Introduction

• The Untouchables

• Single Object System Tables

• Relations & Domains

• Indices, Triggers, Constraints

• More System Tables: Procedures, External Functions

• Security

• Dependencies

• Protecting Your Source Code

Introduction
● Where do the system tables come from?

– Tables are ODS specific
– Created when the database is created

● “active tables”
– Changes to these table affect your database

ODS = On Disk Stucture, the structure of the datafiles
Each version of Firebird has it's own ODS version.

Sometimes, older ODS versions can be used with a
newer server version. A new ODS version usually
introduces new features as well.

The system tables are Active Tables, whenever you
change a system table, this affects the database.
Some of these changes are not allowed, others are.
Using standard DDL is the best way to modify meta
data.

Schema
Click to add an outline

CHARACTER_SETS COLLATIONS

FIELDSFIELD_DIMENSIONS RELATION_FIELDS

FORMATS

RELATIONS

VIEW_RELATIONS

PROCEDURE_PARAMETERS PROCEDURES

INDICESINDEX_SEGMENTS

RELATION_CONSTRAINTS

REF_CONSTRAINTS CHECK_CONSTRAINTS

TRIGGERS

FUNCTION_ARGUMENTS

FUNCTIONS

Several other non-related
tables…

An overview of available system tables. In a real
database, all these are prefixed with RDB$...

The Untouchables
● RDB$FILES

holds 1 row for each additional or shadow file
● RDB$PAGES

holds rows for each database page
● RDB$FORMATS

holds a row for each relation
● RDB$TRANSACTIONS

holds a row for each cross-database transaction

I named these tables “the Untouchables” - modifying
these tables will result into almost instant database
corruption.

All these can be read for analysis or administration.
Most of the tools that come with Firebird will use
these tables to some degree.

Single Object Tables
● RDB$DATABASE

– Single row table
– Database wide (default) characterset
– Has database description in RDB$DESCRIPTION
– System generated relation ID#
– Often used as a “dummy” table
select gen_id(mygenerator, 1) as new_value
from rdb$database

select cast('test' as varchar(10))
from rdb$database

The only things you should modify in this table is the
description, you can change the default character
set so that new char columns will take this
character set instead. Existing columns will not be
changed.

Single Object Tables (continued)
● RDB$GENERATORS

– One row per generator
– Does not store generator values

● RDB$EXCEPTIONS
– One row per user defined “exception” object
– Stores a short message for the exception, larger in Firebird 2

● RDB$FILTERS
– One row per “BLOB filter” object
– Ask Paul how to create one ;-)

RDB$Generators holds names and ID, not the value.
The actual values are stored on a special database
page. RDB$SYSTEM_FLAG is 1 for system
defined generators.

An “exception” message can be 78 characters long,
Firebird 2 increases this limit. There's also a
RDB$SYSTEM_FLAG column, but I've never seen
any system exceptions.

A BLOB filter is a special type of external function,
one that transforms a blob from one subtype to
another. You can register blob filters and they will
end up in the RDB$FILTER table.

Relations & Domains
● Click to add an outline

CHARACTER_SETS COLLATIONS

FIELDS

FIELD_DIMENSIONS

RELATION_FIELDS

FORMATS

RELATIONS

VIEW_RELATIONS

Relations, which are Tables and Views, have a lot in
common. Both are stored in RDB$RELATIONS.
They share several tables as can be seen in this
diagram.

Relations & Domains (continued)
● RDB$FIELDS – Domains

– One row per domain
● Datatype info, incl character set and collation
● Optional check constraint (source & BLR)
● Domain default
● “nullable” flag (or “not null” flag)
● RDB$DESCRIPTION for user written description for the domain

● RDB$FIELDS – Fields
– One row per non-domain field

● Datatype info, incl character set and collation

– RDB$COMPUTED_SOURCE/BLR

RDB$FIELDS holds two items: user generated
Domains and auto-generated domains.

For each field not specifically assigned a domain,
Firebird will auto-generate a domain in the
RDB$FIELDS table.

Relations & Domains (continued 2)
● Datatype information

827 (double)

835 (timestamp)

37 (varchar)

40 (cstring)

8261 (blob)

816 (int64)

14 (char)

413 (time)

412 (date)

410 (float)

48 (integer)

27 (smallint)

CHARACTER_LENGTHFIELD_PRECISIONFIELD_SCALEFIELD_LENGTHDatatype

An overview of the available data types in Firebird
and relevant columns. FIELD_LENGTH <>
CHARACTER_LENGTH for multi-byte character
sets. Always use CHARACTER_LENGTH to
determine which value was used in the DDL
statement.

Relations & Domains (continued 3)
● RDB$RELATION_FIELDS

– Overrides domain default
– Overrides domain “not null” if domain is nullable
– Overrides domain collation
– RDB$FIELD_SOURCE holds (user defined) domain name
– RDB$FIELD_POSITION
– RDB$DESCRIPTION for field description
– For views (check also RDB$VIEW_RELATIONS):

● RDB$BASE_FIELD holds the source column
● RDB$VIEW_CONTEXT holds the source table for the column

RDB$RELATION_FIELDS holds the default value if
there's no domain, else RDB$FIELDS will hold the
default. The default can be overridden, as several
other attributes.

Views use an additional table
RDB$VIEW_RELATIONS in which the tables can
be found that are used by the view. Together with
RDB$BASE_FIELD and RDB$VIEW_CONTEXT,
you can find out where a specific view column is
originating from. If a column is the result of no
source or is unioned, RDB$BASE_FIELD is empty.

Relations & Domains (continued 4)
● RDB$FIELD_DIMENSIONS

– Array dimensions
– One row per dimension

IMO, arrays should not be used because they are
hardly supported in Firebird SQL, but – here's
where you get them from the system tables :-)

Relations & Domains (continued 5)
● RDB$RELATIONS

– One row per table or view
– RDB$FIELD_ID holds field number for new fields
– Views have RDB$VIEW_BLR not NULL
– RDB$DESCRIPTION for use written description
– RDB$SYSTEM_FLAG = 1 tells us if it's a system defined table
– RDB$EXTERNAL_FILE filled in for external tables
– RDB$OWNER_NAME shows object owner

● RDB$VIEW_RELATIONS
– One row for each table used in a view with alias

Besides RDB$VIEW_BLR, there's the
RDB$VIEW_SOURCE column to holds the view
definition.

Column RDB$FIELD_ID holds a value for
incrementing the field ID for each field in the table.

RDB$OWNER_NAME shows who created the table
and this is used for security as well. Only the
database owner and SYSDBA can access all
objects, other users can only access their “own”
tables. This is not used as a prefix for tables or
anything (like in MS SQL, for example).

Indices
● RDB$INDICES

– One row per index, incl system defined indices
– RDB$UNIQUE_FLAG
– RDB$INDEX_TYPE (0 = asc, 1 = desc)
– RDB$INDEX_INACTIVE
– RDB$SYSTEM_FLAG

● RDB$INDEX_SEGMENTS
– One row per index per indexed field
– RDB$FIELD_POSITION for sorting order

Triggers
● RDB$TRIGGERS

– One row per trigger
– RDB$TRIGGER_INACTIVE
– RDB$TRIGGER_SOURCE/BLR
– RDB$SYSTEM_FLAG
– RDB$TRIGGER_TYPE

● Least significant bit: before/after (0/1)
● Two bits: insert/update/delete (01/10/11)
● Repeat the above for Firebird 1.5 for each group of two bits

Constraints
● Click to add an outline

RELATION_FIELDS

RELATIONS

INDICES

INDEX_SEGMENTS

RELATION_CONSTRAINTS

REF_CONSTRAINTS CHECK_CONSTRAINTS

TRIGGERS

As you can see, constraints have a lot to do with
triggers and indices. This is because Firebird
PK/Unique and FK constraints are implemented via
indices and Check constraints are implemented as
triggers.

Constraints (continued)
● RDB$RELATION_CONSTRAINTS

– One row per constraint
– RDB$CONSTRAINT_TYPE (5 types)
– RDB$INDEX_NAME

● Unique & Primary Key Constraints
– RDB$RELATION_CONSTRAINTS
– RDB$INDEX_NAME

● System defined index name
● Implementing index in RDB$INDICES

There are 5 types of constraints: Primary Key,
Unique, Foreign Key, Check and NOT NULL. The
Not Null seems a bit weird, given the
RDB$NULL_FLAG in the fields tables. If the
constraint is implemented via an index,
RDB$INDEX_NAME holds the system generated
index. Firebird 1.5 uses the same name as the
constraint.

Constraints (continued 2)
● RDB$CHECK_CONSTRAINTS

– One row for each NOT NULL field
– Two rows per user defined CHECK constraint
– Zero, one or two rows for each FOREIGN KEY constraint
– RDB$TRIGGER_NAME

● NOT NULL field
● Two triggers per CHECK
● Zero, one or two triggers per FOREIGN KEY constraint

In the CHECK_CONSTRAINTS table, the not null
constraints show up again. RDB$TRIGGER_NAME
holds the column name – rather confusing.

For user defined check constraints, there's two rows
and a system defined trigger name.

For foreign key constraints, there's one row in this
table for any ON DELETE or ON UPDATE actions
not equal to “no action”. Firebird will create a
system trigger for these actions and store the name
in here. So there could be zero, 1 or two triggers for
each FK.

Constraints (continued 3)
● Foreign Key Constraints

– RDB$RELATION_CONSTRAINTS
● RDB$INDEX_NAME for auto-created index in “child” table

– RDB$REF_CONSTRAINTS
● RDB$CONST_NAME_UQ for “target” UNIQUE or PK
● RDB$UPDATE_RULE & RDB$DELETE_RULE

Stored Procedures
● Click to add an outline

CHARACTER_SETS COLLATIONS

FIELDS

PROCEDURE_PARAMETERS PROCEDURES

Stored Procedures (continued)
● RDB$PROCEDURES

– One row per procedure
– RDB$PROCEDURE_SOURCE/BLR
– RDB$PROCEDURE_INPUTS/OUTPUTS
– RDB$DESCRIPTION for user written description

● RDB$PROCEDURE_PARAMETERS
– One row for each procedure parameter
– RDB$FIELD_SOURCE -> RDB$FIELDS (datatype info)
– RDB$PARAMETER_NUMBER for sort order
– RDB$PARAMETER_TYPE (0 = input, 1 = output)
– RDB$DESCRIPTION

External functions
● RDB$FUNCTIONS

– One row per declared function
– Function name, module, entry point
– RDB$RETURN_ARGUMENT
– RDB$DESCRIPTION

● RDB$FUNCTION_ARGUMENTS
– One row per function parameter
– RDB$MECHANISM (FREE_IT adds * -1 modifier)

● By value (0), by reference (1), by descriptor (2),
by isc descriptor (3), by reference with null (5)

– Datatype info like in RDB$FIELDS but in this table

Security
● Security is a 3 step process:

– Users (ISC4.GDB, SECURITY.FDB, SECURITY2.FDB), server
wide

– Roles (RDB$ROLES), in each database
– Grants (RDB$USER_PRIVILEGES), in each database

● Grants in RDB$USER_PRIVILEGES
– RDB$USER = grantee (User, Role, Procedure, Trigger, View)
– RDB$RELATION_NAME = grantable (Role, Table, View,

Procedure)
– RDB$USER_TYPE, RDB$OBJECT_TYPE
– GRANT ALL <> all grants

Planning security is quite the complex task. You can
grant views rights to tables, procedures rights to
tables or views etc etc. All this can result in users
not being able to update a table except via a
procedure (see my other presentation). It helps to
have a GUI tool to set your grants.

The “ALL” privileges is different from giving someone
all privileges and is stored differently as well.

The RDB$GRANT_OPTION column tells you if the
privilege has been granted with “with grant option”,
meaning the user/role can forward this privilege to
others.

Removing SYSDBA privileges does not remove
access. SYSDBA can always access anything.

Protecting your source code
● Schema information cannot be hidden
● Engine needs BLR to execute your code
● Source code (PSQL) can be remove (hidden)

– Stored Procedures (RDB$PROCEDURES)
– Triggers (RDB$TRIGGERS)
– Check Constraints (RDB$TRIGGERS)
– Views (RDB$RELATIONS)
– Domain check constraints (RDB$FIELDS)
– Computed By field (RDB$FIELDS)

● Keep a copy of your source code!!

Questions?
● Click to add an outline

