
Creating and Managing
Recursive Structures

Andrew Morgan

Analytical Logic cc

Johannesburg, South Africa

October 2005

Andrew.Morgan@telkomsa.net

Abstract
This paper describes how to create recursive structures (self-referencing tables) and how
to manipulate these structures using their natural counterpart: recursive stored
procedures.

Recursive structures are extremely powerful when used to describe systems of arbitrary
complexity. Like a directory tree, they can be made as simple or complex as the user
wishes without any impact on the database metadata. Even more useful is the fact that
nodes of a given tree may be reclassified within the tree without affecting the referential
integrity of the associated data.

Two types of recursions are considered: master and slave. Master recursions have no
master relationship and normally have a single root node, although multiple roots are
possible. Slave recursions have a root node per master relationship.

mailto:Andrew.Morgan@telkomsa.net

Table of Contents
1 Preliminaries...3

1.1 Terminology..3
1.2 Relationships...3
1.3 Root Node...4
1.4 Sample Data...4

2 Slave Recursions... 6
3 Basic Stored Procedures...7

3.1 Find a Root...7
3.2 Add a Child..7
3.3 Paste a Child..7
3.4 Rename a Child... 8

4 Recursive Stored Procedures...9
4.1 Drill Up...9
4.2 Drill Down... 9

4.2.1 Basic Drill Down.. 9
4.2.2 Enhanced Drill Down...11

4.3 Duplicate Structure.. 12
4.4 Delete Structure.. 13

5 Using the Recursions.. 14
5.1 Design of SpaceMan..14

5.1.1 TMachine...15
5.1.2 TDrive..15
5.1.3 TScan... 15
5.1.4 TFolder.. 16
5.1.5 TFile...16

5.2 Size Rollup... 17
5.3 Directory Comparison..18
5.4 Performance Data... 21

Table of Illustrations
Illustration 1: High level schematic of several one-to-many relationships................. 3
Illustration 2: High level schematic of a master recursion... 3
Illustration 3: High level schematic of a slave recursion.. 6
Illustration 4: High level design of SpaceMan...14

1 Preliminaries

1 Preliminaries

1.1 Terminology
Many terms are used interchangeably in database literature, so the following clarification
is necessary. When referring to regular tables, individual rows are referred to as such, but
rows of a recursion table are often referred to as nodes. Similarly, regular tables are
referred to as such, but recursive tables are often referred to as trees.

Parent: the master table/row of a master/detail relationship

Child: the detail table/row a master/detail relationship

Field: equivalent to a column

Attribute: a non-key field

Alternate Key: a candidate key of the table implemented as a unique index

Leaf: a node with no children

Branch: a node with at least one child node (Note that when a branch has had all its
leaves deleted, it automatically becomes a leaf)

Root: a special case of a branch

Node: a row in a recursive table; either a branch or a leaf

Tree: all rows belonging ultimately to a root node (for a single-root table, this is
all the rows of the table)

1.2 Relationships
When one considers typical database relationships, they are of the form one-to-one or one-
to-many. Of these, the one-to-many is the most useful and is depicted below:

Each link points to the parent row in the master table. The difficulty with designing
systems of arbitrary complexity with this strategy is that the number of levels (linked
tables) must be known in advance which by definition is not. Changing the number of
levels is no trivial matter.

Using a recursion solves this problem. The child nodes exist in the same table as the
parent. Each link points to the parent node. The child nodes may themselves have

Firebird Conference 2005 3 / 22

Illustration 2: High level schematic of a master recursion

Illustration 1: High level schematic of several one-to-many relationships

1 Preliminaries

children. The number of levels that can be implemented is virtually limitless: each node
must simply identify its parent.

One of the most notable differences between these two schemes is that the regular design
may include specific attributes about the Parent, Child and Grandchild tables, whilst the
recursion does not. These are normally implemented as sub-types. The minimum
requirements necessary for a recursion to operate are:

• Primary Key: the unique key for the node, generically referred to as ID

• Foreign Key: the key of the parent node, generically referred to as PID (Parent ID)

• Node text: the text to display in a tree control, generically referred to as Name

The nature of the PK and FK are important for performance reasons and need to be
carefully considered. Coupled with this is the problem of determining the alternate key
for the tree. Good choices are usually (Name – Name is globally unique) or (PID,Name –
Name is unique to a particular branch). After a great deal of experimentation, the best
choice for the keys are INTEGER.

The design philosophy which I use is formally called “Identifying Surrogate Key Design”
[1]. In this philosophy, we proceed as follows:

The table is assigned a three-letter mnemonic (PLA), and this prefixes all the column
names and index/constraint names. The primary key of the table will be plaID, and it will
have a rolenamed foreign key (plaPID) to itself. The alternate key strategy will be
(plaPID, plaName), that is, within a particular branch, the node names must be unique:

CREATE TABLE Plant (

plaID INTEGER NOT NULL,

plaPID INTEGER NOT NULL,

plaName VARCHAR(64) NOT NULL);

CREATE UNIQUE INDEX PLA_AK1 ON Plant(plaPID,plaName);

ALTER TABLE Plant ADD CONSTRAINT PLA_PK PRIMARY KEY(plaID);

ALTER TABLE Plant ADD CONSTRAINT PLA_PLA FOREIGN KEY(plaPID) REFERENCES Plant;

1.3 Root Node
In order to start a recursion, a root node is required and a consistent strategy needs to be
used to identify them, especially for multi-root tables. Using a NULL for PID seemed a
candidate, but the flaw with this is that the referential integrity becomes dangerously
relaxed. Using a constant is also a possibility (eg -1), but a node with key -1 must exist, and
so becomes a super-root. The best solution is to use the same value for the PID and ID; that
is, the root is the self-owned node (much like a self-signed certificate). Conveniently, many
roots are thus possible.

In earlier versions of Firebird, it was not possible to execute:

INSERT INTO Plant(plaID,plaPID,plaName) VALUES(0,0,'Eskom');

since the foreign key entry did not previously exist, however, this is no longer a problem.

Firebird Conference 2005 4 / 22

1 Preliminaries

1.4 Sample Data

plaID plaPID plaName Comment

0 0 Eskom Root – the self-owned node

1 0 Transmission Owned by Eskom

2 1 Koeberg Owned by Transmission

3 1 Tutuka Owned by Transmission

4 0 Generation Owned by Eskom

5 4 Koeberg Owned by Generation

6 4 Matla Owned by Generation

Primary Key

Alternate Key

Arranged hierarchically, this looks like:

Eskom

Transmission

Koeberg

Tutuka

Generation

Koeberg

Matla

Notice that Koeberg appears twice which is allowable with the chosen alternate key
strategy.

A new root could now be added as follows:

plaID = GEN_ID(Plant,1);

INSERT INTO Plant(plaID,plaPID,plaName)

VALUES(:plaID,:plaID,'Organization');

Firebird Conference 2005 5 / 22

2 Slave Recursions

2 Slave Recursions
It is possible to implement slave recursions which are defined as single root node per
relationship. The master table of the relationship could be a regular table or a recursion
as depicted below:

This design shows a plant recursion which is parent to a component recursion. The
reasons for splitting a recursion like this vary, but in this case, additional data will be
stored about components, and they will also have sampled values, which a plant would not
have. The alternate key strategy for the Component table again requires consideration,
and here a good choice is (plaID,comName). This is interpreted as a unique component per
plant, but multiple instances of that component across different plants.

CREATE TABLE Component (

plaID INTEGER NOT NULL,

comID INTEGER NOT NULL,

comPID INTEGER NOT NULL,

comName VARCHAR(64) NOT NULL);

CREATE UNIQUE INDEX COM_SK ON Component(comID);

CREATE UNIQUE INDEX COM_AK1 ON Component(plaID,comName);

ALTER TABLE Component ADD PRIMARY KEY (plaID,comID);

ALTER TABLE Component ADD FOREIGN KEY (plaID) REFERENCES Plant;

ALTER TABLE Component ADD FOREIGN KEY (plaID,comPID) REFERENCES Component;

There are several important things to notice with the above definition:

• As a result of the identifying nature of the design, the primary key for the
Component table is (plaID,comID). It is necessary to distinguish another important
key which is COM_SK (Surrogate Key), because comID is unique in its own right.

• The Component foreign key back to itself only provides a rolename for the lowest
level of the composite key (ie comPID).

• Plant does not have a PLA_SK index because it would have the same definition as
PLA_PK. This is true of top level tables. Slave recursions must implement
XXX_SK.

Firebird Conference 2005 6 / 22

Illustration 3: High level schematic of a slave recursion

3 Basic Stored Procedures

3 Basic Stored Procedures
In order to efficiently navigate around the recursive tables, a number of stored procedures
are required to fulfill the following tasks. These are split into two categories:

Basic stored procedures:

• Find a root

• Add a child

• Paste a child (re-classification)

• Rename a child

and recursive stored procedures:

• Drill up through the structure

• Drill down through the structure

• Duplicate a portion of the structure

• Delete a portion of the structure

The basic stored procedures will be covered in this section, and recursive in the next.

3.1 Find a Root
Typically, find a root would be specific to a table. In the example above, the Plant table has
a single root which could be found by:

SELECT plaID

FROM Plant

WHERE plaID = plaPID;

The Component table is more interesting:

SELECT comID

FROM Component

WHERE comID = comPID

AND plaID = :plaID;

and requires that a specific plant (the master relationship) be supplied as a parameter.

3.2 Add a Child
Add a leaf to a specified parent node.

comID = GEN_ID(Component,1);

INSERT INTO Component(plaID,comID,comPID,comName)

VALUES(:plaID,:comID,:comPID,:comName);

The plant (plaID), parent node (comPID) and text (comName) would be supplied as
parameters. It is useful to return comID.

3.3 Paste a Child
This moves a node to a different parent.

Firebird Conference 2005 7 / 22

3 Basic Stored Procedures

UPDATE Component SET

comPID = :comPID

WHERE comID = :comID;

Note that because comPID is not part of the primary key, this update has no effect on the
referential integrity relating to Component. Thus, nodes can be very easily re-classified!

3.4 Rename a Child
UPDATE Component SET

comName = :comName

WHERE comID = :comID;

Note that because of the identifying surrogate key design, comName is not part of the
primary key, this update has no effect on the referential integrity relating to Component.

Firebird Conference 2005 8 / 22

4 Recursive Stored Procedures

4 Recursive Stored Procedures
To recap, the following stored procedures are covered:

• Drill up through the structure

• Drill down through the structure

• Duplicate a portion of the structure

• Delete a portion of the structure

4.1 Drill Up
The first of the challenging procedures. This is not strictly a recursive procedure, because
it does not call itself, but rather iterates through an internal loop. Given a particular
Node, drill up the given number of levels (Height), or until exhaustion.

ALTER PROCEDURE PlantUp(Node INTEGER,Height INTEGER)

RETURNS (plaID INTEGER,

plaPID INTEGER,

plaName VARCHAR(64),

plaLevel INTEGER) AS

BEGIN

WHILE (Height != 0) DO

BEGIN

SELECT plaID,plaPID,plaName,:Height

FROM Plant

WHERE plaID = :Node

INTO :plaID,:plaPID,:plaName,:plaLevel;

SUSPEND;

Node = plaPID;

Height = Height – 1;

IF (plaID = plaPID)

THEN EXIT;

END

END#

This procedure locates the required node and returns it. It then alters the Node parameter
to the current node's parent and decrements Height for the next iteration. The procedure
terminates after returning the requested levels, or plaID = plaPID (the root has been found
and every subsequent iteration would return the root). Note the plaLevel parameter which
is automatically supplied. Note also that supplying a negative Height forces the procedure
to drill up exhaustively.

4.2 Drill Down
The requirement of this procedure is to drill out a section of the tree from a particular
node, for a number of levels. There are many ways to go about the recursion, but it is best
to develop the ideas and then enhance them.

Firebird Conference 2005 9 / 22

4 Recursive Stored Procedures

4.2.1 Basic Drill Down

ALTER PROCEDURE PlantDown(Node INTEGER,Depth INTEGER)

RETURNS (plaID INTEGER,

plaPID INTEGER,

plaNAME VARCHAR (64),

plaLevel INTEGER) AS

DECLARE VARIABLE Child INTEGER;

BEGIN

-- Stage 1 (Return the current Node)

-- PLAN (PLANT INDEX (PLA_PK))

SELECT plaID,plaPID,plaName,-:Depth

FROM Plant

WHERE plaID = :Node

INTO :plaID,:plaPID,:plaName,:plaLevel;

SUSPEND;

IF (Depth = 0)

THEN EXIT;

Depth = Depth – 1;

-- Stage 2 (Create a list of the Node's children)

-- PLAN SORT ((PLANT INDEX (PLA_AK1,PLA_PLA)))

FOR SELECT plaID

FROM Plant

WHERE plaPID = :Node

AND plaPID != plaID

ORDER BY plaName

INTO :Child DO

BEGIN

-- Stage 3 (Drill out the Node's children recursively)

FOR SELECT plaID,plaPID,plaName,plaLevel

FROM PlantDown(:Child,:Depth)

INTO :plaID,:plaPID,:plaName,:plaLevel DO

BEGIN

SUSPEND;

END

END

END#

This procedure consists of three main stages.

• Stage 1 returns the current node. If depth is zero, the drill down has proceeded as
far as needed (no children of the current node are required).

• Stage 2 creates a list of the current node's children. Note the condition
plaPID != plaID which is necessary to prevent the root node from endlessly
returning itself as a child! This condition is a recurring theme for most of the
recursive procedures.

• Stage 3 drills out each of the children, by recursively calling PlantDown.

Although functional, this procedure is rather slow because stage 1 returns a single node on
each execution. It would be preferable to return all the children of a node in a single
select. However, if the procedure returns only children, the problem is to return the
initial node.

Firebird Conference 2005 10 / 22

4 Recursive Stored Procedures

4.2.2 Enhanced Drill Down
In order to return the initial node, and get all children in a single select, the procedure
needs to be split into two. Stage 1 goes into one procedure, and stages 2 and 3 go into a
second:

ALTER PROCEDURE PlantDown(Node INTEGER,Depth INTEGER)

RETURNS (plaID INTEGER,

plaPID INTEGER,

plaName VARCHAR (64),

plaLevel INTEGER) AS

BEGIN

-- Return the current Node

-- PLAN (PLANT INDEX (PLA_PK))

SELECT plaID,plaPID,plaName,-:Depth

FROM Plant

WHERE plaID = :Node

INTO :plaID,:plaPID,:plaName,:plaLevel;

SUSPEND;

IF (Depth = 0)

THEN EXIT;

Depth = Depth – 1;

FOR SELECT plaID,plaPID,plaName,plaLevel

FROM PlantDrill(:Node,:Depth)

INTO :plaID,:plaPID,:plaName,:plaLevel DO

BEGIN

SUSPEND;

END

END#

This procedure returns the initial node, and sets up the recursion. The test for zero depth
is necessary to prevent an exhaustive drill down.

ALTER PROCEDURE PlantDrill(Node INTEGER,Depth INTEGER)

RETURNS (plaID INTEGER,

plaPID INTEGER,

plaName VARCHAR(64),

plaLevel INTEGER) AS

DECLARE VARIABLE Remain INTEGER;

DECLARE VARIABLE Child INTEGER;

BEGIN

Remain = Depth – 1;

-- Stage 1 (Create a list of the Node's children)

-- PLAN SORT ((PLANT INDEX (PLA_AK1,PLA_PLA)))

FOR SELECT plaID,plaPID,plaName,-:Depth

FROM Plant

WHERE plaPID = :Node

AND plaPID != plaID

ORDER BY plaName

INTO :plaID,:plaPID,:plaName,:plaLevel DO

BEGIN

SUSPEND;

-- Stage 2 (Drill out the Node's children recursively)

Firebird Conference 2005 11 / 22

4 Recursive Stored Procedures

IF (Depth != 0) THEN

BEGIN

Child = :plaID;

FOR SELECT plaID,plaPID,plaName,plaLevel

FROM PlantDrill(:Child,:Remain)

INTO :plaID,:plaPID,:plaName,:plaLevel DO

BEGIN

SUSPEND;

END

END

END

END#

This procedure consists of two main stages:

• Stage 1 returns all the children of the current Node.

• Stage 2 executes if the depth is non-zero (more levels are required). It recursively
calls PlantDrill for the current child node.

Note the plaLevel parameter which is automatically supplied – this will be very useful
later on. Note also that supplying a negative Depth forces the procedure to drill down
exhaustively.

In order by build a fast visual component, additional enhancements are required.
Specifically, a tree component would always drill down 2 levels (in response to clicking the
+). The first level supplies all the children, and the second supplies grandchildren, so that
the button state would be correct (ie whether or not a + appears next to each child). Since
only one grandchild is necessary to establish a + the procedure should be able to return a
reduced dataset. This is left as an exercise for the reader.

4.3 Duplicate Structure
ALTER PROCEDURE PlantCopy(Source INTEGER,Target INTEGER) AS

DECLARE VARIABLE SID INTEGER;

DECLARE VARIABLE TID INTEGER;

DECLARE VARIABLE Name VARCHAR(64);

BEGIN

FOR SELECT GEN_ID(Plant,1),plaID,plaName

FROM Plant

WHERE plaPID = :Source

AND plaPID != plaID

INTO :TID,:SID,:Name DO

BEGIN

INSERT INTO TPlant(plaID,plaPID,plaName)

VALUES (:TID,:Target,:Name);

EXECUTE PROCEDURE PlantCopy(SID,TID);

END

END#

This turns out to be a remarkably simply procedure. The parameters indicate the Source
and Target nodes for the copy. The select simultaneously:

• creates a list of the Source node's children

• generates a key for the new node

Firebird Conference 2005 12 / 22

4 Recursive Stored Procedures

• sets up the recursion by identifying the next level Source (SID) and Target (TID).

Each child node is inserted using Target as the PID, and the procedure is recursively
called.

4.4 Delete Structure
ALTER PROCEDURE PlantDelete(ID INTEGER) AS

BEGIN

FOR SELECT plaID

FROM PlantDown(:ID,-1)

ORDER BY plaLevel DESC

INTO :plaID DO

BEGIN

DELETE FROM TPlant

WHERE plaID = :plaID;

END

END#

This also turns out to be a remarkably simply procedure. It is strictly not a recursion, but
sources its data from a recursion. The difficulty with deleting nodes is that the top node
cannot be deleted since the presence of child nodes will violate the referential integrity.
The solution is to drill out the tree to exhaustion with PlantDown and invert it! This way
the tree is deleted from the bottom up, leaf-by-leaf.

Firebird Conference 2005 13 / 22

5 Using the Recursions

5 Using the Recursions
Having covered the primitives for manipulating the recursion, an examination of a
working application would be instructive.

Directory structures are familiar to everyone using computers, and most would readily
identify with them.

The objective of this application is to compute the total storage of a particular folder by
summing the size its files and recursively, the size of its sub-folders. The usage is then
ranked by the portion that the file or folders uses.

I originally wrote an application to do this using live scans and it worked fine, so
converting it to a database application was purely for this demonstration. However, the
gains from doing this have been great as we shall see.

5.1 Design of SpaceMan
Instead of live scans, the application now performs a drive snapshot and stores it in the
database. Already there is a performance gain because subsequent live scans are no
longer required. As time goes by, new snapshots need to be performed, and so the system
accumulates a series. The huge gain now is that scans may be compared, and not just with
themselves. A scan of one drive may be compared to a scan of a drive on another machine
(whose snapshot has been stored). This may be useful for comparing a network of
machines to a master structure.

Since the comparisons will be performed recursively, it is possible to compare just
portions of the structure. For example, one may compare C:\WINDOWS to D:\WIN on a
different machine to detect changes to OS files only.

The application is designed to process a standard redirected directory listing, so the
snapshots may be performed locally, and sent to a central machine for processing.
Consequently, it is possible to perform scans of removable media and mapped drives,
however these may be neither useful nor efficient.

The design in a nutshell has a machine single-root master recursion. Each machine has
many drives. Each drive has many scans (snapshots).

Firebird Conference 2005 14 / 22

Illustration 4: High level design of SpaceMan

file:///D:/WIN
file:///C:/Document/Firebird/WINDOWS

5 Using the Recursions

Folder is a muli-root master recursion. Each root represents a single scan and is stored in
the scan table. Each folder has many files.

5.1.1 TMachine
This table is a single-root master recursion and stores all the machines in a tree. The
intention of the tree is to be able to arbitrarily classify the machines. For example, the
root could be the domain, the next level could be routers and the final level the actual
computers. Alternatively, the tree could be arranged by department. The point is that the
classification is arbitrary, and may be changed without affecting the referential integrity.

CREATE TABLE TMachine(

macID DSURROGATE NOT NULL,

macPID DSURROGATE NOT NULL,

macName DSTRING32 NOT NULL);

ALTER TABLE TMachine

ADD CONSTRAINT MAC_PK PRIMARY KEY(MACID);

ALTER TABLE TMachine

ADD CONSTRAINT MAC_MAC FOREIGN KEY(MACPID)

REFERENCES TMachine(MACID);

CREATE UNIQUE INDEX MAC_AK ON TMachine(MACNAME);

The chosen alternate key strategy is globally unique names.

5.1.2 TDrive
This is a regular table.

CREATE TABLE TDrive(

macID DSURROGATE NOT NULL,

driID DSURROGATE NOT NULL,

driName DSTRING32 NOT NULL);

ALTER TABLE TDrive

ADD CONSTRAINT DRI_PK PRIMARY KEY(MACID,DRIID);

ALTER TABLE TDrive

ADD CONSTRAINT DRI_MAC FOREIGN KEY (MACID) REFERENCES

TMachine(MACID);

CREATE UNIQUE INDEX DRI_SK ON TDrive(DRIID);

CREATE UNIQUE INDEX DRI_AK ON TDrive(MACID,DRINAME);

The chosen alternate key strategy for this table is (macID,driName), ie a particular drive
letter may only appear once per machine. Notice the surrogate key index DRI_SK.

5.1.3 TScan
This is a regular table.

CREATE TABLE TScan(

macID DSURROGATE NOT NULL,

driID DSURROGATE NOT NULL,

scaID DSURROGATE NOT NULL,

folID DSURROGATE NOT NULL,

scaName DDATETIME NOT NULL);

ALTER TABLE TScan

Firebird Conference 2005 15 / 22

5 Using the Recursions

ADD CONSTRAINT SCA_PK PRIMARY KEY(MACID,DRIID,SCAID);

ALTER TABLE TScan

ADD CONSTRAINT SCA_DRI FOREIGN KEY(MACID,DRIID)

REFERENCES TDrive(MACID,DRIID);

ALTER TABLE TScan

ADD CONSTRAINT SCA_FOL FOREIGN KEY(FOLID)

REFERENCES TFolder(FOLID);

CREATE UNIQUE INDEX SCA_SK ON TScan(SCAID);

CREATE UNIQUE INDEX SCA_AK ON TScan(FOLID);

The chosen alternate key strategy for this table is (folID). The foreign key points to the
root node of a scan which may only be referenced once. Notice the surrogate key index
SCA_SK.

5.1.4 TFolder
This table is a multi-root master recursion and exhaustively stores all the folders of the
drive being scanned. Although it has the same capabilities as the machine table, this is
essentially a read-only table.

CREATE TABLE TFolder(

folID DSURROGATE NOT NULL,

folPID DSURROGATE NOT NULL,

folSize DDOUBLE NOT NULL,

folName DSTRING128 NOT NULL);

ALTER TABLE TFolder

ADD CONSTRAINT FOL_PK PRIMARY KEY(FOLID);

ALTER TABLE TFolder

ADD CONSTRAINT FOL_FOL FOREIGN KEY(FOLPID)

REFERENCES TFolder(FOLID);

CREATE UNIQUE INDEX FOL_AK ON TFolder(FOLPID,FOLNAME);

The chosen alternate key strategy for this table is (folPID,folName). This is consistent
with the real world problem being modelled: a folder name cannot be repeated within a
particular folder, but may otherwise appear any number of times on the drive. This is a
top level table, and so the surrogate key is omitted, being identical to the primary key.

Notice folSize implemented as a double because of file sizes in excess of 32-bit1. This
attribute is a placeholder for subsequent roll-ups.

5.1.5 TFile

CREATE TABLE TFile(

folID DSURROGATE NOT NULL,

filID DSURROGATE NOT NULL,

filSize DDOUBLE NOT NULL,

filName DSTRING128 NOT NULL);

ALTER TABLE TFile

ADD CONSTRAINT FIL_PK PRIMARY KEY(FOLID,FILID);

ALTER TABLE TFile

ADD CONSTRAINT FIL_FOL FOREIGN KEY(FOLID)

REFERENCES TFolder(FOLID);

1 A future upgrade to BIGINT may be preferable

Firebird Conference 2005 16 / 22

5 Using the Recursions

CREATE UNIQUE INDEX FIL_SK ON TFile(FILID);

CREATE UNIQUE INDEX FIL_AK ON TFile(FOLID,FILNAME);

The chosen alternate key strategy for this table is (folID,filName). This is consistent with
the real world problem being modelled: a file name cannot be repeated within a particular
folder, but may otherwise appear any number of times on the drive. Notice the surrogate
key index FIL_SK.

Notice filSize implemented as a double because of file sizes in excess of 32-bit2. This
attribute is set while inserting from the directory listing.

Those who a sharp will notice one tiny flaw in the Folder/File part of the design: a folder
named X and a file named X may appear within a particular folder. However, since the file
table is also essentially read-only and is populated from a directory listing this problem
may be ignored.

5.2 Size Rollup
Now the power of a database and recursions really come to bear. The task remains to sum
the size of all the files and folders and update the size of the corresponding folder. Note
that slack space is currently ignored3.

ALTER PROCEDURE PRollSize(folPID INTEGER) AS

DECLARE folID INTEGER;

DECLARE folSize DOUBLE PRECISION;

DECLARE filSize DOUBLE PRECISION;

BEGIN

-- Invert the tree and go!

FOR SELECT folID

FROM PFolderDown(:folPID,-1,-1)

ORDER BY folLevel DESC

INTO :folID DO

BEGIN

-- Sum the size of files belonging to this folder.

SELECT SUM(filSize)

FROM TFile

WHERE folID = :folID

INTO :filSize;

-- Sum the size of sub-folders belonging to this folder

SELECT SUM(folSize)

FROM TFolder

WHERE folPID = :folID

AND folID != folPID

INTO :folSize;

-- Update!

UPDATE TFolder SET

folSize = COALESCE(:folSize,0) + COALESCE(:filSize,0)

WHERE folID = :folID;

2 A future upgrade to BIGINT may be preferable.
3 A future upgrade to compute slack space at file level may be advantageous.

Firebird Conference 2005 17 / 22

5 Using the Recursions

END

END

The trick to the rollup is to invert the folder listing. This forces the summation to begin at
the folder leaves (folders without sub-folders) and proceed up to the root. Notice the
folID != folPID condition which prevents the size of the root being added to the size of it
children (this is not a problem on the first execution, but each time the rollup is executed,
the root would grow by a multiple of its original size).

5.3 Directory Comparison
One of the great benefits of having stored the snapshots is to compare them. The output of
this procedure is a list a files with relative path and file size information. At first sight
this is a very complex procedure but in reality the original block has been split into three
optimized blocks which are easy to grasp.

CREATE PROCEDURE PFolderCompare (

Parent VARCHAR (255),

oldID INTEGER,

newID INTEGER)

RETURNS (Directory VARCHAR (255),

Filename VARCHAR (255),

Status VARCHAR (16),

OldSize DOUBLE PRECISION,

NewSize DOUBLE PRECISION) AS

DECLARE VARIABLE folID1 INTEGER;

DECLARE VARIABLE folID2 INTEGER;

BEGIN

-- Deleted (Folders in old missing in new)

FOR SELECT :Parent || '\' || F1.folName, F1.folID, -1

FROM TFolder F1

LEFT JOIN TFolder F2

ON F2.folPID = :newID

AND F2.folPID != F2.folID

AND F1.folName = F2.folName

WHERE F1.folPID = :oldID

AND F1.folPID != F1.folID

AND F2.folID IS NULL

INTO :Directory, folID1, :folID2 DO

BEGIN

FOR SELECT filName, 'Deleted', filSize, -1

FROM TFile

WHERE folID = :folID1

INTO :Filename, :Status, :OldSize, :NewSize DO

BEGIN

SUSPEND;

END

FOR SELECT Directory, Filename, Status, OldSize, NewSize

FROM PFolderCompare(:Directory,:folID1,:folID2)

INTO :Directory, :Filename, :Status, :OldSize, :NewSize

DO

BEGIN

Firebird Conference 2005 18 / 22

5 Using the Recursions

SUSPEND;

END

END

-- Changed (Folders present in old and new)

FOR SELECT :Parent || '\' || F1.folName, F1.folID, F2.folID

FROM TFolder F1

JOIN TFolder F2

ON F1.folName = F2.folName

WHERE F1.folPID = :oldID

AND F1.folPID != F1.folID

AND F2.folPID = :newID

AND F2.folPID != F2.folID

INTO :Directory, folID1, :folID2 DO

BEGIN

FOR SELECT Filename, Status, OldSize, NewSize

FROM PFileCompare(:folID1,:folID2)

INTO :Filename, :Status, :OldSize, :NewSize DO

BEGIN

SUSPEND;

END

FOR SELECT Directory, Filename, Status, OldSize, NewSize

FROM PFolderCompare(:Directory,:folID1,:folID2)

INTO :Directory, :Filename, :Status, :OldSize, :NewSize

DO

BEGIN

SUSPEND;

END

END

-- Added (Folders present in new missing in old)

FOR SELECT :Parent || '\' || F2.folName, -1, F2.folID

FROM TFolder F1

RIGHT JOIN TFolder F2

ON F1.folPID = :oldID

AND F1.folPID != F1.folID

AND F1.folName = F2.folName

WHERE F2.folPID = :newID

AND F2.folPID != F2.folID

AND F1.folID IS NULL

INTO :Directory, folID1, :folID2 DO

BEGIN

FOR SELECT filName, 'Added', -1, filSize

FROM TFile

WHERE folID = :folID2

INTO :Filename, :Status, :OldSize, :NewSize DO

BEGIN

SUSPEND;

END

FOR SELECT Directory, Filename, Status, OldSize, NewSize

Firebird Conference 2005 19 / 22

5 Using the Recursions

FROM PFolderCompare(:Directory,:folID1,:folID2)

INTO :Directory, :Filename, :Status, :OldSize, :NewSize

DO

BEGIN

SUSPEND;

END

END

END

This procedure uses the convention of left for old and right for new. Notice that a file size
of -1 is used to indicate a missing file. The code consists of three optimized blocks which
are covered out of sequence:

• Deleted. These are folders existing in the old scan, but missing in the new. They are
located by an non-join (a left outer join with null entries on the right). Since the
files belonging to new are known to be missing, the file list is simply a select of files
for the old folder.

• Added. These are folders existing in the new scan, but missing in the old. They are
located by an non-join (a right outer join with null entries on the left). Since the
files belonging to old are known to be missing, the file list is simply a select of files
for the new folder.

• Changed. These are folders that exist in both scans and are located by an inner join.
As to differences in files, the situation is not as simple as for Deleted or Added. A
helper procedure is used to perform this comparison (PFileCompare).

Each block recursively calls PFolderCompare to drill through the directory structure to
exhaustion.

Like PFolderCompare, PFileCompare at first sight this is a very complex procedure but in
reality the original block has been split into three optimized blocks which are easy to
grasp.

ALTER PROCEDURE PFileCompare(

oldID INTEGER,

newID INTEGER)

RETURNS (Filename VARCHAR (255),

Status VARCHAR (16),

OldSize DOUBLE PRECISION,

NewSize DOUBLE PRECISION) AS

BEGIN

-- Deleted.

FOR SELECT F1.filName, 'Deleted', F1.filSize, -1

FROM TFile F1

LEFT JOIN TFile F2

ON F2.folID = :newID

AND F1.filName = F2.filName

WHERE F1.folID = :oldID

AND F2.filID IS NULL

INTO :FileName, :Status, :OldSize, :NewSize DO

BEGIN

SUSPEND;

END

Firebird Conference 2005 20 / 22

5 Using the Recursions

-- Changed.

FOR SELECT F1.filName, F1.filSize, F2.filSize

FROM TFile F1

JOIN TFile F2

ON F1.filName = F2.filName

WHERE F1.folID = :oldID

AND F2.folID = :newID

AND F1.filSize != F2.filSize

INTO :FileName, :OldSize, :NewSize DO

BEGIN

IF (NewSize > OldSize)

THEN Status = 'Bigger';

ELSE Status = 'Smaller';

SUSPEND;

END

-- Added.

FOR SELECT F2.filName, 'Added', -1, F2.filSize

FROM TFile F1

RIGHT JOIN TFile F2

ON F1.folID = :oldID

AND F1.filName = F2.filName

WHERE F2.folID = :newID

AND F1.filID IS NULL

INTO :FileName, :Status, :OldSize, :NewSize DO

BEGIN

SUSPEND;

END

END

This procedure uses the convention of left for old and right for new. Notice that a file size
of -1 is used to indicate a missing file. The code consists of three optimized blocks which
are covered out of sequence:

• Deleted. These are files existing in the old scan, but missing in the new. They are
located by an non-join (a left outer join with null entries on the right).

• Added. These are files existing in the new scan, but missing in the old. They are
located by an non-join (a right outer join with null entries on the left).

• Changed. These are files that exist in both scans and are located by an inner join.
Note that only files with a size difference are selected; other files are considered to
be the same4.

5.4 Performance Data
Directory scan: 180s.

Snapshot creation: 150s.

Size rollup: 4s

Entire drive compare: 8.5s

4 A better strategy may be to compute a CRC (cheap) or Hash (expensive) and compare those
instead. These would have to be computed by the client machines.

Firebird Conference 2005 21 / 22

5 Using the Recursions

Bibliography
1 Andrew Morgan Database Design with Identifying Surrogate Key (2000)

Firebird Conference 2005 22 / 22

	1Preliminaries
	1.1Terminology
	1.2Relationships
	1.3Root Node
	1.4Sample Data

	2Slave Recursions
	3Basic Stored Procedures
	3.1Find a Root
	3.2Add a Child
	3.3Paste a Child
	3.4Rename a Child

	4Recursive Stored Procedures
	4.1Drill Up
	4.2Drill Down
	4.2.1Basic Drill Down
	4.2.2Enhanced Drill Down

	4.3Duplicate Structure
	4.4Delete Structure

	5Using the Recursions
	5.1Design of SpaceMan
	5.1.1TMachine
	5.1.2TDrive
	5.1.3TScan
	5.1.4TFolder
	5.1.5TFile

	5.2Size Rollup
	5.3Directory Comparison
	5.4Performance Data

		+2711-704-1085
	2005-11-15T18:53:12+0200
	Johannesburg
	Andrew Morgan
	I am the author of this document

