
Database Design with
Identifying Surrogate Keys

Andrew Morgan

Analytical Logic cc

Johannesburg, South Africa

May 2000

Andrew.Morgan@telkomsa.net

Abstract
This paper describes surrogate keys and how they are used in database design. Surrogates
are defined as efficient substitutes, and their purpose is to substitute themselves for large
cumbersome keys. They are implemented as a native numeric type, usually integers.

Two types of surrogates are considered, identifying and non-identifying. Identifying
designs implement the full composite key in details tables, whereas non-identifying
designs only implement the simple key of its immediate parent. Although simpler to
implement, non-identifying designs are massively disadvantaged because they are missing
portions of the entire key, and consequently have problems like poor deep join
performance.

Identifying designs are shown to be far superior. In the context of updating or resizing
(conventional) primary keys, through substitution, surrogate key designs are unsurpassed
in efficiency, flexibility and availability.

mailto:Andrew.Morgan@telkomsa.net

Table of Contents
1 Introduction...3
2 Conventional Design...4

2.1 Conventional Data..5
2.2 Substitution...6

2.2.1 Company... 6
2.2.2 Region..6
2.2.3 Department... 6
2.2.4 Employee...7
2.2.5 Timsheet..7

3 Identifying Surrogate Design...9
3.1 Surrogate Data...11

4 Problems with Non-identifying Surrogate Key Designs4................................... 13
4.1 Poor Deep Joins...13

4.1.1 No Key Unification...13
5 Size Comparison..16

5.1 Size (bytes per row)...16
5.2 Primary Keys (bytes per row)..16
5.3 Foreign Keys (bytes per row)...16
5.4 Coupled Alternate and Surrogate Keys (bytes per row)............................. 17
5.5 Disadvantages..17
5.6 Advantages.. 18

5.6.1 Minimal Joins...18
5.6.2 Primary Key Data and Structure Changes...................................... 19

5.7 Normalization..20
6 Conclusion..21

Table of Illustrations
Illustration 1: High level schematic of a Timesheet system..3
Illustration 2: High level schematic of a Political system..13
Illustration 3: High level schematic of an upgraded Timesheet system.....................18

1 Introduction

1 Introduction
Is it possible to design very robust and flexible databases, incorporating the controls of
referential integrity without their inherent inflexibility? By inflexibility, it is implied the
difficulties associated with making changes to the primary key of a table which is the
target of a referential integrity constraint. I intend to show in this article that this can be
achieved very successfully if a surrogate key design is used.

What are surrogate keys? The definition of surrogate is substitute or replacement. I use
the term in the substitute sense of the definition. That is, the primary key of a table is
substituted by another smaller and more efficient key. The reasons for the substitution
are the topic of this paper. Surrogate keys are substantially more flexible than
conventional primary keys since they substitute the task of a conventional key without
their usual limitations.

It is probably easiest to illustrate surrogate keys by example. Suppose one wished to
execute the following design, represented in IDEF1X notation:

A company has many regions, which have many departments, which have many
employees, which have many timesheets.

The rest of the paper concerns itself with implementations of the above system using
identifying conventional, non-identifying surrogate key and identifying surrogate key
designs.

Firebird Conference 2005 3 / 22

Illustration 1: High level schematic of a Timesheet system

2 Conventional Design

2 Conventional Design
In a conventional design, the relationships must be identifying (the parent primary key is
migrated to the child to form a composite primary key). A typical implementation for the
core section may look something like:

CREATE TABLE Company(

comName VARCHAR(32) NOT NULL,

...

PRIMARY KEY(comName));

CREATE TABLE Region(

comName VARCHAR(32) NOT NULL,

regName VARCHAR(32) NOT NULL,

...

PRIMARY KEY(comName,regName),

FOREIGN KEY(comName) REFERENCES Company);

CREATE TABLE Department(

comName VARCHAR(32) NOT NULL,

regName VARCHAR(32) NOT NULL,

depName VARCHAR(32) NOT NULL,

...

PRIMARY KEY(comName,regName,depName),

FOREIGN KEY(comName,regName) REFERENCES Region);

CREATE TABLE Employee(

comName VARCHAR(32) NOT NULL,

regName VARCHAR(32) NOT NULL,

depName VARCHAR(32) NOT NULL,

empName VARCHAR(32) NOT NULL,

...

PRIMARY KEY(comName,regName,depName,empName),

FOREIGN KEY(comName,regName,depName) REFERENCES Department);

CREATE TABLE Timesheet(

comName VARCHAR(32) NOT NULL,

regName VARCHAR(32) NOT NULL,

depName VARCHAR(32) NOT NULL,

empName VARCHAR(32) NOT NULL,

timDate DATE NOT NULL,

...

PRIMARY KEY(comName,regName,depName,empName,timDate),

FOREIGN KEY(comName,regName,depName,empName) REFERENCES Employee);

Notice that with an identifying scheme, it is necessary to make a composite primary key
for all child tables. An identifying scheme is necessary so that the entire key chain is
unambiguous and completely identified; hence the name.

Firebird Conference 2005 4 / 22

2 Conventional Design

2.1 Conventional Data
Company

comName

Borland

Corel

Region

comName regName

Borland Los Angeles

Borland New York

Corel Ontario

Corel New York

Note: regName cannot uniquely identify the Region (two companies have New York
Regions).

Department

comName regName depName

Borland Los Angeles IT

Borland New York IT

Corel Ontario IT

Corel New York IT

Note: depName cannot uniquely identify the department (all regions have IT departments).
Neither can (regName,depName) uniquely identify a department (two companies have
New York IT departments)!

Employee

comName regName depName empName

Borland Los Angeles IT Smith, AJ

Borland New York IT Jones, BD

Corel Ontario IT Black, MC

Corel New York IT Brown, PR

Timesheet

comName regName depName empName timDate

Borland Los Angeles IT Smith, AJ 2000/01/07

Borland New York IT Jones, BD 2000/01/07

Corel Ontario IT Black, MC 2000/01/07

Corel New York IT Brown, PR 2000/01/07

Note: timDate cannot uniquely identify the time sheet (every employee has a time sheet for
that date).

Firebird Conference 2005 5 / 22

2 Conventional Design

2.2 Substitution
The procedure now is to adapt the conventional design be implementing integer key
substitutions and eventually derive the identifying surrogate key design.

2.2.1 Company
The primary key for Company is (comName). Let the integer comID represent comName
and become the primary key of the table. It is necessary to retain comName to describe
the row, but it is now an attribute of the primary key. The structure of the table becomes:

CREATE TABLE Company(

comID INTEGER NOT NULL,

comName VARCHAR(32) NOT NULL,

...

PRIMARY KEY(comID));

An alternate key (unique index) must be designated so that the new table is functionally
equivalent to the old:

CREATE UNIQUE INDEX COM_AK ON Company(comName);

Company is a top level table, and is simpler than the detail tables that follow.

2.2.2 Region
The primary key for Region is (comName, regName). Let the integer regID represent
(comName, regName) and become the primary key of the table. It is necessary to retain
regName to describe the row, but it is now an attribute of the primary key. In order for the
referential integrity to Company be preserved, comID must also be present. The structure
of the table becomes:

CREATE TABLE Region(

regID INTEGER NOT NULL,

regName VARCHAR(32) NOT NULL,

comID INTEGER NOT NULL

...

PRIMARY KEY(regID),

FOREIGN KEY(comID) REFERENCES Company);

An alternate key must be designated so that the new table is functionally equivalent to the
old. Since the primary key was (comName,regName), and comName is represented by
comID, the alternate key strategy is:

CREATE UNIQUE INDEX REG_AK ON Region(comID,regName);

2.2.3 Department
The primary key for Department is (comName, regName, depName). Let the integer depID
represent (comName, regName, depName) and become the primary key of the table. It is
necessary to retain depName to describe the row, but it is now an attribute of the primary
key. In order for the referential integrity to Region be preserved, regID must also be
present. The structure of the table becomes:

Firebird Conference 2005 6 / 22

2 Conventional Design

CREATE TABLE Department(

depID INTEGER NOT NULL,

depName VARCHAR(32) NOT NULL,

regID INTEGER NOT NULL

...

PRIMARY KEY(depID),

FOREIGN KEY(regID) REFERENCES Region);

An alternate key must be designated so that the new table is functionally equivalent to the
old. Since the primary key was (comName, regName, depName), and (comName, regName)
is represented by regID, the alternate key strategy is:

CREATE UNIQUE INDEX DEP_AK ON Department(regID,depName);

2.2.4 Employee
The primary key for Employee is (comName, regName, depName, empName). Let the
integer empID represent (comName, regName, depName, empName) and become the
primary key of the table. It is necessary to retain empName to describe the row, but it is
now an attribute of the primary key. In order for the referential integrity to Department
be preserved, depID must also be present. The structure of the table becomes:

CREATE TABLE Employee(

empID INTEGER NOT NULL,

empName VARCHAR(32) NOT NULL,

depID INTEGER NOT NULL,

...

PRIMARY KEY(empID),

FOREIGN KEY(depID) REFERENCES Department);

An alternate key must be designated so that the new table is functionally equivalent to the
old. Since the primary key was (comName, regName, depName, empName), and (comName,
regName, depName) is represented by depID, the alternate key strategy is:

CREATE UNIQUE INDEX EMP_AK ON Employee(depID,empName);

2.2.5 Timsheet
The primary key for Timesheet is (comName, regName, depName, empName, timDate). Let
the integer timID represent (comName, regName, depName, empName, timDate) and
become the primary key of the table. It is necessary to retain timDate to describe the row,
but it is now an attribute of the primary key. In order for the referential integrity to
Employee be preserved, empID must also be present. The structure of the table becomes:

Firebird Conference 2005 7 / 22

2 Conventional Design

CREATE TABLE Timesheet(

timID INTEGER NOT NULL,

timDate DATE NOT NULL,

empID INTEGER NOT NULL

...

PRIMARY KEY(timID),

FOREIGN KEY(empID) REFERENCES Employee);

An alternate key must be designated so that the new table is functionally equivalent to the
old. Since the primary key was (comName, regName, depName, empName, timDate), and
(comName, regName, depName, empName) is represented by empID, the alternate key
strategy is:

CREATE UNIQUE INDEX TIM_AK ON Timesheet(empID,timdate);

This completes the minimum substitution necessary for the two designs to be functionally
equivalent insofar as they hold data. Note however, although (for example) empID
represents (comName, regName, depName, empName), it is not possible to decompose it to
recover the individual elements of the original key. Consequently, it is not possible to join
Timesheet to Company or any of the tables higher in the chain except for Employee. The
above process has derived a non-identifying surrogate key design. Non-identifying
surrogate key designs are still some way short of being practically useful. They suffer
from a number of debilitating problems (see section 4). Some additional fields are
necessary for the surrogate key design to fully represent the original.

Firebird Conference 2005 8 / 22

3 Identifying Surrogate Design

3 Identifying Surrogate Design
The task now at hand is to transform the non-identifying design into an identifying one.
By examining the Timesheet table the solution can be seen, and is easily extrapolated
backwards.

Recall that the original primary key of Timesheet was (comName, regName, depName,
empName, timDate). In order to achieve an identifying design, it is necessary to be able to
join from Timesheet to any table in the structure chain (Company, Region, Department or
Employee).

Note also that by observing which surrogates represent what, the following is observed:

comName, regName, depName, empName, timDate

<--------------------- timID --------------------->

<--------------- empID ---------------->

<---------- depID ---------->

<----- regID ---->

<comID>

In order to satisfy the identifying nature of the original design, all surrogates of the
original key must be present. This will not change the alternate key definition of the
tables, but will change the primary keys. It is necessary to preserve the uniqueness of the
individual keys (ie what were the primary keys in the non-identifying design), thus, a new
index (the surrogate key index) takes on the role of the former primary key. The design
becomes:

CREATE TABLE Company(

comID INTEGER NOT NULL,

comName VARCHAR(32) NOT NULL,

...

PRIMARY KEY(comID));

/*

Omitted because it would be the same as the primary key.

CREATE UNIQUE INDEX COM_SK ON Company(comID)

*/

CREATE UNIQUE INDEX COM_AK ON Company(comName);

CREATE TABLE Region(

comID INTEGER NOT NULL,

regID INTEGER NOT NULL,

regName VARCHAR(32) NOT NULL,

...

PRIMARY KEY(comID,regID),

FOREIGN KEY(comID) REFERENCES Company);

CREATE UNIQUE INDEX REG_SK ON Region(regID)

CREATE UNIQUE INDEX REG_AK ON Region(comID,regName);

Firebird Conference 2005 9 / 22

3 Identifying Surrogate Design

CREATE TABLE Department(

comID INTEGER NOT NULL,

regID INTEGER NOT NULL,

depID INTEGER NOT NULL,

depName VARCHAR(32) NOT NULL,

...

PRIMARY KEY(comID,regID,depID),

FOREIGN KEY(comID,regID) REFERENCES Region);

CREATE UNIQUE INDEX DEP_SK ON Department(depID);

CREATE UNIQUE INDEX DEP_AK ON Department(regID,depName);

CREATE TABLE Employee(

comID INTEGER NOT NULL,

regID INTEGER NOT NULL,

depID INTEGER NOT NULL,

empID INTEGER NOT NULL,

empName VARCHAR(32) NOT NULL,

...

PRIMARY KEY(comID,regID,empID,depID),

FOREIGN KEY(comID,regID,depID) REFERENCES Department);

CREATE UNIQUE INDEX EMP_SK ON Employee(empID);

CREATE UNIQUE INDEX EMP_AK ON Employee(depID,empName);

CREATE TABLE Timesheet(

comID INTEGER NOT NULL,

regID INTEGER NOT NULL,

depID INTEGER NOT NULL,

empID INTEGER NOT NULL,

timID INTEGER NOT NULL,

timDate DATE NOT NULL,

...

PRIMARY KEY(comID,regID,depID,empID,timID),

FOREIGN KEY(comID,regID,depID,empID) REFERENCES Employee);

CREATE UNIQUE INDEX TIM_SK ON Timesheet(timID);

CREATE UNIQUE INDEX TIM_AK ON Timesheet(empID,timDate);

One of the great advantages of identifying surrogate key designs this that the primary key
becomes an internal mechanism of the database, whilst the alternate keys implement the
conventional user interface (the surrogate keys xxxID are never exposed to an end user,
whilst the interface fields xxxName are). By decoupling these tasks a number of
interesting possibilities arise. Recall that the alternate key strategy on Employee is (depID,
empName). Both designs (conventional and surrogate) allow a particular employee to
reside in multiple departments. It is now possible to tighten the model to say
(regID,empName) or even (comID, empName) depending on the system being modelled.
This does not effect the primary keys in any way, and the decision may be deferred or even
changed after the system is up and running! Assuming no data violates the condition, the
following could be done:

DROP INDEX EMP_AK;

CREATE UNIQUE INDEX EMP_AK ON Employee(regID,empName);

This change in strategy has no effect on the front-end application at all. The ability to
defer or change the alternate key strategy is a flexibility the conventional design simply

Firebird Conference 2005 10 / 22

3 Identifying Surrogate Design

cannot achieve! This is because the conventional design couples the referential integrity
mechanism with the interface into the primary key definitions which cannot be changed
(easily) after construction.

Note that the composite primary keys are ordered top-down (comID..xxxID). The reason
for this is that because there is a surrogate key (xxxID) for all detail tables, the primary
key index has a different selectivity.

3.1 Surrogate Data
Company

comID comName

1 Borland

2 Corel

Note: comName is unique.

Region

comID regID regName

1 11 Los Angeles

1 12 New York

2 13 Ontario

2 14 New York

Note: regID uniquely identifies the region (even though two have the same name). Also
(comID, regName) is unique.

Department

comID regID depID DepName

1 11 21 IT

1 12 22 IT

2 13 23 IT

2 14 24 IT

Note: depID uniquely identifies the department (even though four have the same name).
Also (regID, depName) is unique.

Employee

comID regID depID empID empName

1 11 21 31 Smith, AJ

1 12 22 32 Jones, BD

2 13 23 33 Black, MC

2 14 24 34 Brown, PR

Note: (depID, empName) is unique.

Timesheet

Firebird Conference 2005 11 / 22

3 Identifying Surrogate Design

comID regID depID empID timID timDate

1 11 21 31 41 2000/01/07

1 12 22 32 42 2000/01/07

2 13 23 33 43 2000/01/07

2 14 24 34 44 2000/01/07

Note: timID uniquely identifies the timesheet (even though four have the same date). Also
(empID, timDate) is unique.

Notice that the actual values of the surrogates are irrelevant (as long as they are
consistent). In the above data samples, the keys have been started from different series for
clarity. In reality, each sequence would typically start at 1 and using generators to
produce them is very effective.

The default alternate key strategy it starting to emerge by examining the shaded columns
in the tables above. It normally consists of the surrogate key of the immediate parent table
(the primary key if the parent is a top level table), coupled with the last component of the
conventional key.

There is a great deal of meaning wrapped up in these surrogate keys:

Key Value Key Chain Represents

comID = 1 [1] Borland

regID = 12 1[,12] Borland / New York

depID = 23 2,13[,23] Corel / Ontario / IT

empID = 34 2,14,24[,34] Corel / New York / IT / PR Brown

timID = 41 1,11,21,31[,41] Borland / Los Angeles / IT / AJ Smith / 2000/01/07

Firebird Conference 2005 12 / 22

4 Problems with Non-identifying Surrogate Key Designs4

4 Problems with Non-identifying
Surrogate Key Designs4
Non-identifying surrogate key designs are still some way short of being practically useful.
They suffer from a number of debilitating problems.

4.1 Poor Deep Joins
Supposing one needs to join the Timesheet and Company tables. This must be done as
follows:

...

FROM Timesheet TIM

JOIN Employee EMP

ON TIM.empID = EMP.empID

JOIN Department DEP

ON EMP.depID = DEP.depID

JOIN Region REG

ON DEP.regID = REG.regID

JOIN Company COM

ON REG.comID = COM.comID

...

Since the key structure is non-identifying, the key chain is incomplete, and each
intermediate table must be joined to find the target table.

The identifying equivalent is:

...

FROM Timesheet TIM

JOIN Company COM

ON TIM.comID = COM.comID

...

because all elements of the key chain are present and intermediate tables in the chain may
be jumped.

4.1.1 No Key Unification
Key unification results from an identifying key structure where one table references
another table and portions of their respective primary keys have common elements. The
common elements are unified so that there are not multiple copies of those fields in the
table.

Firebird Conference 2005 13 / 22

Illustration 2: High level schematic of a Political system

4 Problems with Non-identifying Surrogate Key Designs4

This design shows a country with many provinces and many political parties. A province
has many officials. The relationship from Party to Province indicates which political party
governs that province.

In a non-identifying design, the primary keys for Country, Province, Party and Official are
respectively (couID), (proID), (parID) and (offID). The only restriction on the Province /
Party relationship is that it is valid.

In an identifying design, the primary keys for Country, Province, Party and Official are
respectively (couID), (couID,proID), (couID,parID) and (couID,proID,offID), and key chains
are listed in the same order. Province and Party both have couID in common, and so they
unify (that is, there is only one couID field in Province). Consequently it is a foreign key
violation to attempt to set the governing party of a province to a party from another
country!

Consider the following data:

Country

couID couName

1 United States

2 South Africa

Party

couID parID parName

1 1 Democrats

1 2 Republicans

2 3 Democratic Alliance

2 4 African National Congress

Province

couID proID parID proName

1 1 1 California

1 2 2 New York

1 3 3 Ohio

2 4 4 Western Cape

2 5 5 Gauteng

Official

couID proID offID offName

1 1 1 Arnold Schwarzenegger

1 1 2

1 2 3 Guilane

1 3 4 ?

2 4 5 ?

2 5 6 Tshilowe

If we now want to update the Province table, and set the ANC (from South Africa) as the
governing party of California, there are two ways to go about it:

Update parID in Province

Firebird Conference 2005 14 / 22

4 Problems with Non-identifying Surrogate Key Designs4

UPDATE Province SET

parID = 4

WHERE proID = 1

However, because the Country in Province is 1, the attempted foreign key chain (1,4) is not
valid in Party (it is (2,4)) and a foreign key violation results.

Update couID and parID in Province

UPDATE Province SET

couID = 2,

parID = 4

WHERE proID = 1

This gets passed the above problem by effectively trying to move the province into a
different country. This update attempts to change the primary key chain (1,1) in Province
to (2,1). But this update would invalidate the the primary key chain (1,1,1) for Arnold
Schwarzenegger in Official, and again a foreign key violation results.

Note that in a non-identifying design this update would be allowed because the Province
table does not know which country the referenced Party belongs to.

Key unification is an extremely beneficial bonus of an identifying structure. It is almost a
free service to enforce a consistent design. Non-identifying schemes should be avoided.

Firebird Conference 2005 15 / 22

5 Size Comparison

5 Size Comparison
At this point it is worth noting how these implementations are different. Notice that their
content is identical although not specified (... in the source listings) except for the presence
of surrogate keys and coupled alternate keys in the surrogate design. In the tables below,
IC is an identifying conventional, and IS is an identifying surrogate. All sizes ignore
the unidentified portions of the design.

5.1 Size (bytes per row)

Table IC IS IS/IC %

Company 32 36 112.5

Region 64 40 62.5

Department 96 44 45.8

Employee 128 48 37.5

Timesheet 132 20 15.2

Surrogate tables are always smaller from the first detail table down and become
increasingly smaller the deeper the structure.

5.2 Primary Keys (bytes per row)

Table IC IS IS/IC %

Company 32 4 12.5

Region 64 8 12.5

Department 96 12 12.5

Employee 128 16 12.5

Timesheet 132 20 15.2

Surrogate tables always have smaller primary keys, usually a specific fraction of a
conventional key size (because typically a series of VARCHAR fields have been mapped to
a series of INTEGER fields).

5.3 Foreign Keys (bytes per row)

Table IC IS IS/IC %

Region 32 4 12.5

Department 64 8 12.5

Employee 96 12 12.5

Timesheet 128 16 12.5

Surrogate tables always have smaller foreign keys, usually a specific fraction of a
conventional key size.

Firebird Conference 2005 16 / 22

5 Size Comparison

5.4 Coupled Alternate and Surrogate Keys (bytes per
row)

Table IT IS (AK) IS (SK)

Company 0 32 4

Region 0 36 4

Department 0 36 4

Employee 0 36 4

Timesheet 0 8 4

Surrogate tables always require an additional alternate and surrogate key, however, their
sizes are usually fixed and generally do not increase as the structure deepens.

Notice that all the surrogate primary and foreign keys are substantially smaller and are
massively efficient (primarily integer based) compared to the conventional design! Also,
the losses incurred by the necessary inclusion of composite surrogate and alternate keys
are more than recovered by the exclusion of huge composite primary and foreign keys.

5.5 Disadvantages
One disadvantage is that tables are limited to 232 (approx. 4,200,000,000) rows (for 32-bit
integers). Some databases are already supporting 64-bit integers, in which case, the tables
are limited to 264 (approx. 18,400,000,000,000,000,000) rows, which is much less of a problem.

Another is a rather peculiar behaviour which surrogate designs exhibit by virtue of the
fact that keys are mapped to integers. It is legal (although meaningless) to join arbitrary
surrogates together. For example:

...

FROM Company COM

JOIN Region REG

ON REG.regID = COM.comID

...

This is analogous to:

...

FROM Company COM

JOIN Region REG

ON REG.regName = COM.comName

...

The difference is that regName will almost never match comName whereas regID will most
likely match some range of comID because they are both numeric sequences originating at
one. As a general rule, the join will succeed by the table of lower cardinality. The fault
essentially lies with the fact that SQL implements very poor (if any) type checking.

The best long-term solution is to create a different domain (data type) for each surrogate.
The emergence of proper object / relational database management systems in the future [1]
would question invalid (type mismatched) joins, if not reject them outright. Thus, the
surrogate join described above would simply be illegal. In fact, the only legal joins would
be the explicit foreign keys identified in the design that were correctly migrated.

Firebird Conference 2005 17 / 22

5 Size Comparison

In the short term, different domains may achieve little, since some SQL engines will even
allow:

...

FROM Company COM

JOIN Region REG

ON REG.regID = COM.comName

...

This is crazy, since the engine is performing implicit type casting which is not within the
scope of a pure relational database (relational theory requires explicit typecasts [2]). Since
this is the case, joins (especially surrogate) must be done very carefully.

5.6 Advantages
This is where the surrogate key design really comes into its own. It is very effective at
selecting data from joined tables with minimal join conditions and is exceptionally
adaptable to data and structure changes.

5.6.1 Minimal Joins
To demonstrate this, we will make a modification to the design as follows:

The modifications include a backward link from employee to department to indicate the
head of department. We now wish to sum hours by the head of the department's budget
(empBudget); admittedly a contrived example!

Without specifying the modified design (except to note that Department has a rolenamed
foreign key empNameHead), here is the select:

Firebird Conference 2005 18 / 22

Illustration 3: High level schematic of an upgraded Timesheet system

5 Size Comparison

SELECT empBudget,SUM(timHours)

FROM Timesheet TIM

-- Find the head of the department.

JOIN Department DEP

ON TIM.comName = DEP.comName

AND TIM.regName = DEP.regName

AND TIM.depName = DEP.depName

-- Find the head's budget

JOIN Employee EMP

ON DEP.comName = EMP.comName

AND DEP.regName = EMP.regName

AND DEP.depName = EMP.depName

AND DEP.empNameHead = EMP.empName

GROUP BY empBudget

The identifying surrogate key equivalent (with Department holding a rolenamed foreign
key empHID) is:

SELECT empBudget,SUM(timHours)

FROM Timesheet TIM

JOIN Department DEP

ON TIM.depID = DEP.depID

JOIN Employee EMP

ON DEP.empHID = EMP.empID

GROUP BY empBudget

The difference is that because each surrogate key is unique in its own right, it is not
necessary to join with the whole key chain.

5.6.2 Primary Key Data and Structure Changes
Let us say that one wanted to update comName from "Borland" to "Inprise". Unless the
conventional system supports cascading updates, referential integrity prevents this action
because the name "Borland" appears as a portion of foreign keys all over the system. Even
with cascading updates, this is a kludge, because the database must update every record
that refers to "Borland". This could be millions of rows! To accomplish this manually, all
foreign keys must be dropped, all fields of all effected tables must be updated and then the
foreign keys reapplied. This requires structural and data changes, and most likely taking
the system offline.

In the surrogate design, updating comName (on a live system) has absolutely no effect on
the rest of the system whatsoever, since all foreign key references are through its
substitute (surrogate). This can be done as follows:

UPDATE Company SET

comName = 'Inprise'

WHERE comName = 'Borland';

Assuming that you can live with cascading updates. The next problem is even worse. Let
us say that VarChar(32) is no longer big enough, and one wanted to change it to 64. Unless
the conventional system allows cascading structure changes, referential integrity prevents
this action because all instances of the foreign key must be the same type. To accomplish
this manually, all foreign keys must be dropped, all reference fields of all affected tables
must have their type changed and then the foreign keys must be reapplied. This requires
structural and data changes, and the system will have to be taken offline.

Firebird Conference 2005 19 / 22

5 Size Comparison

Again, in the surrogate design, changing comName's size (on a live system) has absolutely
no effect on the rest of the system whatsoever, since all foreign key references are through
its substitute (surrogate). This can be done as follows:

ALTER TABLE Company ADD temp VARCHAR(32);

UPDATE Company SET temp = comName;

DROP INDEX COM_AK;

ALTER TABLE Company DROP COLUMN comName;

ALTER TABLE Company ADD comName VARCHAR(64);

UPDATE Company SET comName = temp;

CREATE UNIQUE INDEX COM_AK ON Company(comName);

ALTER TABLE Company DROP COLUMN temp;

Although this action requires structural changes, they are only to a single index and a
single table!

The renaming of "Borland" to "Inprise" and changing the field to VARCHAR(64)
could all be achieved within about five minutes with virtually no down time! The
system can remain online as long as non-select operations on Company are blocked.

The very important point here, is that none of the above changes are unreasonable! We
regularly get requests to change drawing, document or package numbers (either through a
legitimate mistake or a reorganization). If these numbers are directly linked to
transmittals, time sheets and the like, changing them is very difficult. In our experience,
these types of changes are remarkably common, and have cost us massive amounts of
downtime in the past using conventional designs. With the surrogate key technique, our
database designs are:

• Smaller
• More efficient
• Usually faster
• Extremely adaptable to change
• Experience minimal downtime

5.7 Normalization
It has been suggested that surrogate key designs violate normalization, however, this
simply is not true. Both the surrogate key, and the conventional key are candidate keys
of the table. Higher form normalization rules state that Functional Dependencies (FD's -
BCNF), Multi-Value Dependencies (MVD's - 4NF) and Join Dependencies (JD's - 5NF) must
be implied by the candidate keys of a table, not the primary key per se.

Firebird Conference 2005 20 / 22

6 Conclusion

6 Conclusion
Surrogates are unfortunately one of those database facets which tends to be highly
polarized -- you either love or hate them. The benefits I have achieved by their use so far
outweigh their disadvantages that I would probably never contemplate another non-
surrogate design1.

It is possible to design extremely flexible and adaptable systems by employing surrogate
keys, that satisfy normalization rules. The advantages of such a design enormously
outweigh their slight overhead (which can be rapidly recovered anyway).

Change Type Conventional Surrogate

Update PK Drop all FK's
Update all PK references
Reapply all FK's

Update "Key"

Change PK type Drop all FK's
Change all FK sizes
Update all PK references
Reapply all FK's

Drop a single AK
Change "key" size
Reapply a single AK

In a conventional design, these tasks require structural changes in both cases, and the
second requires structural changes against every table that references the changing key.
Apart from the structural change to a single table and a single index, the surrogate design
accomplishes these tasks by data updates alone! These properties make surrogate designs
extremely efficient, compact, flexible, adaptable and available.

1 In the five years since writing this article, this has proven true!

Firebird Conference 2005 21 / 22

6 Conclusion

Bibliography
1 Chris Date Foundation for Object/Relational Databases (2000)
2 Chris Date An Introduction to Database Systems (2000)

Firebird Conference 2005 22 / 22

	1Introduction
	2Conventional Design
	2.1Conventional Data
	2.2Substitution
	2.2.1Company
	2.2.2Region
	2.2.3Department
	2.2.4Employee
	2.2.5Timsheet

	3Identifying Surrogate Design
	3.1Surrogate Data

	4Problems with Non-identifying Surrogate Key Designs4
	4.1Poor Deep Joins
	4.1.1No Key Unification

	5Size Comparison
	5.1Size (bytes per row)
	5.2Primary Keys (bytes per row)
	5.3Foreign Keys (bytes per row)
	5.4Coupled Alternate and Surrogate Keys (bytes per row)
	5.5Disadvantages
	5.6Advantages
	5.6.1Minimal Joins
	5.6.2Primary Key Data and Structure Changes

	5.7Normalization

	6Conclusion

		+2711-704-1085
	2005-11-15T18:53:51+0200
	Johannesburg
	Andrew Morgan
	I am the author of this document

