
Firebird development process
Past, present and future

 
 

Pavel Cisar, IBPhoenix

Firebird Conference 2016, Prague

Few facts about Firebird

In a Nutshell, Firebird...

• was established on 31th July 2000

• has had 55,533 commits made by 70 contributors representing 1,306,723 lines of code

• is mostly written in C with a very low number of source code comments (6%)

• has a well established, mature codebase maintained by a large development team with stable Y-O-Y commits

• released 6 major versions and 25 maintenance versions of Firebird engine in 65 releases

• has 6 sub-projects (Java, .NET, ODBC and Python drivers, Documentation and QA)

• Main platforms are Windows and Linux, with extended support for MacOS

• Also (some versions) available on Solaris, FreeBSD, AIX, HP-UX, Sinix-Z and Android



From the tracker...

Totals

Resolution Bugs Improv. New feature Total

Fixed 2275 324 171 2770

Unresolved 616 360 234 1210

Won't Fix 553 93 71 717

Duplicate 166 35 53 254

Incomplete 42 3 4 49

Cannot Reproduce 191 3 1 195

Total 3843 818 534 5195

Processed in releases so far

Resolution Bugs Improvement New feature Total

Fixed 2077 310 164 2551

Fixed in average 39 issues per release, 14 per month.

Unscheduled and affecting v2.1 and up

Resolution Bugs Improvement New feature Total

Fixed 8 0 0 8

Unresolved 395 3 17 415

Total 403 3 17 423

Issues for 4.0

Resolution Bugs Improvement New feature Total

Fixed 99 13 4 116

Unresolved 1 15 10 26

Total 100 28 14 142



Development process in the past

2000-2002: Initial stage
• Loosely organized group of enthusiasts

• Uphill battle for survival (FB 1.0 released 12th March 2002)

• Defining Identity (logo, brand, community presence etc.)

• Competition from Borland InterBase and Yaffil

• Work on Firebird 1.5 started (alpha in October 2002)

2003: Turning the tide
• Firebird Foundation formed

• Fight with Mozilla over Firebird name

• Firebird 1.5 in RC stage (RC7 in November)

• Work started on Firebird 2.0

• Firebird 1.0.3 (3th June, last form 1.0 line)

• Yaffil merges with Firebird (2nd December 2003)

• Jim Starkey starts working on Vulcan (17th December)

• QA initiative started (using QMTest)

2004-2005: Hope & Strife
• Firebird 1.5 released 21th February 2004 (after 9 RC's)

• QA around QMTest evolved into useable state

• Vulcan and VulcanJ (QA)

• Work on 2.0 continues (with hopes to include results from Vulcan development)

• Continuous problems with quality, efficiency and interpersonal relations

2006: Consolidation
• Jim leaves Vulcan for MySQL (18th February)

• Nikolay leaves for Red Soft

• Firebird 2.0 released on 12th November

• JIRA implemented (June) and website moved

2007-2008: Down to Earth
• David S. Rushby died in July 2007

• Firebird 2.1 development and release (18th April 2008)

• Firebird 2.5 started (Alpha in September 2008)

•

Bold plans (January 2008):

• Q1: v2.1 RC and Final, v2.0.4, v2.5 Alpha

• Q2: v2.1.1, v2.5 Beta

• Q3: v1.5.6, v2.0.5, v2.5 RC

• Q4: v2.1.2, v2.5 Final, v3.0 Alpha



• Technical Task Group (TTG) formed (December 2008)

2009-2010 It's getting complicated

•
kinterbasdb 3.3.0 released (January 2009) that works with FB 2.1 but had problems with 2.5. Firebird QA in
serious jeopardy.

• QMTest abandoned in favor of home-made system fbtest (October 2009)

• Big Infrastructure Crash (December 2009)

• Big migration from CVS to Subversion (2009-2010)

• Building build farm, take one

• Firebird 2.5 released on 4th November 2010

2011-2016 What the Hell
Bumpy road to v3.0

• New website (2011)

• Build farm for daily snapshot builds (Windows and Linux)

• Problems with QA builds up. It's time for new driver - FDB (initial release 2012).

•
Number of FB versions in development reduced from 4 to 3 (2.0.7 from April 2012 was the last one from 2.0
line, decided in July)

• June 2013 - First Alpha for 3.0

• August 2013 - Pavel Zotov joined QA

• January 2014 - FB 3.0 Alpha 2

• April 2014 - Checkpoint for 3.0 and post 3.0 development. Maintenance release policy changed.

• October/November 2014 - Conference & 4.0 feature set planning & 3.0 Beta 1
• 2015 - Year of the 3.0 release. We almost made it.

• 2015 - First big financial crisis

• 2016 - 3.0 is out, work started on 4.0.

• 2016 - Second big financial crisis.

• 2016 - Migration from SF Subversion to GitHub.

Fixed 1062 bugs, 183 improvements, 53 new features:

• 2011: 2.1.4, 2.5.1

• 2012: 2.0.7

• 2013: 2.1.5, 2.5.2, security updates to 2.1.5 and 2.5.2, 3.0 Alpha 1

• 2014: 2.1.6 and 2.1.7, 2.5.3, 3.0 Alpha 2 and Beta 1

• 2015: 2.5.4 and 2.5.5, 3.0 Beta 2 and RC1

• 2016: 3.0 RC2 and Release, 2.5.6, 3.0.1

Technical Task Group (TTG)

• Developers and project members & Foundation sponsors and members

• For discusion about development plans and priorities

• Founded 2008, 4 meetings (2x 2008, 2010 and 2015/16)



Lessons from our development process

What is it about

• People

• Communication

• Infrastructure

• Process

• Funding

People (The Bright Side)

•

We have a great team:

• skills

• motivation

• dedication

• responsibility

• interpersonal relationships

• initiative and able to act both independently and as a team

• Cooperation with RedSoft

People (The Dark Side)

•
Group is too small - 3.5 full-time core developers, 3 part-time QA workers, skeleton staff for sub-projects and
supporting tasks (~15 people in total)

• Some tasks are not sustainably filled or filled enough or at all

• Building overworking and burnout syndrome (most people are with project for 12 and more years)

Communication (The Bright Side)
• Well established channels (private and public)

• Good communication culture

• Intragroup communication and small scale cooperation (2-5 people) works very well

Communication (The Dark Side)
• Group communication and decision making is slow

• Language barrier

• No dedicated personel

•

Communication rings are not connected very well

• Group to group communication

• Public records and "broadcasting"

Infrastructure (The Bright Side)

• Web(s)

• Tracker (JIRA)



• Subversion & Git

• Build farm

• Download central

Infrastructure (The Dark Side)
• Very outdated JIRA (decommissioned 5 years ago) in semifragille state

• Reocuring problems with infrastructure hosted at BroadView Software in Canada

• Fragmentation

• No dedicated personel

Process (The Bright Side)
• Clear distribution of responsibilities

• Functional routine to create a release

• Functional problem tracking

• Functional QA to keep regressions under control

• Minimal bureaucracy

Process (The Dark Side)
• No formal process (with schedules, checkpoints, "meetings", checklists)

• Plans only at basic level, no fixed routine for planning and problem resolution

•
Actual status and prospects of future are not well communicated to all concerned. Important information are
unevenly distributed and are not shared very well.

• Opaque nature of work leads to internal inefficiency and increases entry barrier for new people.

Funding (The Bright Side)
• Firebird Foundation facilitates funding from (corporate and private) sponsors

• Enough funds and resources to operate at fundamental level

Funding (The Dark Side)
• Not enough funds and resources to grow

• Occasional shortage of takings (so far always solved)

• Foundation is utterly passive in relation to the Project and it's own mission

New Development Process
It's time for change. We have to adapt and evolve.

People

•
We need at leats 5 more people in supporting jobs (QA, infrastructure, small coding tasks, assistance etc.) but
10-15 people would be best.

• We need at least one junior core developer.

•
We need volunteer(s) that would actively look for new people, resources and sponsors (ideally operating under
Foundation's roof).

• Opportunity for individuals or employees of sponsor to help even as part-time job.



Communication

•
We need coordinators and "communication officers" for the project itself and for the community overall.
Someone who would make sure that important infromation is shared to all concerned.

•
We have to find and get used to new methods how to communicate efficiently (maximum gain with minimal
effort).

Infrastructure
• We need help with JIRA upgrade, hosting and maintenance.

• We need someone who would focus on looking after infrastructure.

Process

•

Constraints and conditions:

• New development and maintenance done in parallel.

• Minimal level of required bureaucracy and group decisions, use of clear and simple policies.

• Use of open and preferably free technical resources.

• Next is an overview of proposal that's currently discused...

•
Whole process is structured into continuous sequence of unified iteration cycles of fixed length. Iteration cycle
is 6 weeks long (~1.5 month).

•

Whole development cycle for new version consists from 10 iterations (~14 months in total) divided into 4
stages (more about that later). It's possible to extend it with few more iterations (for example due to technical
reasons - more complex features, increased maintenance etc.).

Iteration templates - a list of task types and assignments necessary for specific iteration purpose:

• regular iteration (new development + maintenance) in several variants (3+3, 2+2/1+1, 3x1+3 etc.)

• RC iteration (bug fixing, preparation for new big cycle)

• initial iteration (research + increased maintenance)

• "emergency" maintenance iteration (as long as necessary)

•
"idle" iteration (variable time, for vacations, conferences, "tool sharpening" etc. where we'll focus on other
things than development itself)

• others that we would identify as reoccurring

•

Allows focusing on single task, individually and collectivelly, long enough to achieve visible results. Both new
development and bug fixing require different methodology and approach to coordinated work between
developers and supporting staff (QA, doc writers etc.) and may require/use different resources.

•
It is easier to keep track of the current status for all participants, as it doesn't require additional information
exchanges beteen peers. I.e. we basically know what others are doing at the time.

• It's easier to evaluate progress, and check to what extent our expectations are met.

• Planning is easier, including synchronization of personal schedules (vacations etc.) with group schedule.

•
Initial stage. 3 iter. Research and specification of technical realization (written skeleton documentation) and
initial / prototype implementation. Result is Alpha release.

•
Alpha stage. 3 iter. Finalization of implementation, documentation, testing, verification of correctness. Result
is Beta release.

•
Beta stage. 3 iter. Stress testing, testing in real world scenarios, public testing, optimization and bug fixing.
Result is RC release.

•
Release Candidate stage. 1 iter. Final public testing and (critical only) bug fixing with 2 week checkpoints.
Final planning of new version, preparation for new big development cycle (branching etc.).

Collaboration could be managed mostly via facilities we currently use:

• JIRA tracker: Targets and task records, planning, assigning, centralisation of task-related information, public
comments and discussions about task/target.

• Mailing lists: as used now.



• Web. Instructions and guidelines, procedures, rules, links to resources. If possible automatically aggregated
status from other sources.

• Callendar. We can use Google calendars or install our own callendar server (there are several open source
options). In both cases it's possible to use various calendar clients of individual preference.

Funding
Responsibility of Firebird Foundation - Stabilize income flow that would cover essential grants, plus would create
monetary reserves in FF accounts to cover essential expenses for at least 3 months.

• Solution for monetary fluctuations (basket of currencies)

• Revision of grant allocations

• Active fund-raising

Thanks for your attention. Questions?
 

contact: pcisar@ibphoenix.cz www.ibphoenix.com

mailto:pcisar@ibphoenix.cz

	Firebird development process
	Few facts about Firebird
	In a Nutshell, Firebird...
	From the tracker...

	Development process in the past
	2000-2002: Initial stage
	2003: Turning the tide
	2004-2005: Hope & Strife
	2006: Consolidation
	2007-2008: Down to Earth
	2009-2010 It's getting complicated
	2011-2016 What the Hell
	Technical Task Group (TTG)

	Lessons from our development process
	What is it about
	People (The Bright Side)
	People (The Dark Side)
	Communication (The Bright Side)
	Communication (The Dark Side)
	Infrastructure (The Bright Side)
	Infrastructure (The Dark Side)
	Process (The Bright Side)
	Process (The Dark Side)
	Funding (The Bright Side)
	Funding (The Dark Side)

	New Development Process
	People
	Communication
	Infrastructure
	Process
	Funding

	Thanks for your attention. Questions?

